If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3u(u+2)=0
We multiply parentheses
3u^2+6u=0
a = 3; b = 6; c = 0;
Δ = b2-4ac
Δ = 62-4·3·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6}{2*3}=\frac{-12}{6} =-2 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6}{2*3}=\frac{0}{6} =0 $
| -1/8=3w | | -6/5-1/5=-5/7x+2/7x | | -9=-8y | | x/x2+5x+6=0 | | 4y+2y=22 | | 6x+49=2080 | | z=135(15)+120 | | 135(15)+120=z | | z=(15)+120 | | 1+2x+-6x2+-2x3+x4=0 | | 4x-1(25-x)=70 | | s/6=-15 | | 24+4x-7+27x= | | z=3(1.15)+4.6 | | z=3(1.15)-4.6 | | z=2(1.15)-4.6 | | z=5(1.15)-4.6 | | z=6.2(1.15)-4.6 | | z=5(1.15)+4.6 | | 6.2=z(1.15)+4.6 | | 5=z(1.15)+4.6 | | 5=z(1.15)+4.6=5 | | x=-55(4.5)+20 | | x=-1.29(4.5)+20 | | x=0(4.5)+20 | | x=2.10(4.5)+20 | | x=-1.55(4.5)+20 | | Y=+-√x | | -3/4-5x=0 | | x+19/2=15 | | M-2/9=m-5/10 | | 9/4=2n+10/n+7 |