If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3v^2+26v+49=0
a = 3; b = 26; c = +49;
Δ = b2-4ac
Δ = 262-4·3·49
Δ = 88
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{88}=\sqrt{4*22}=\sqrt{4}*\sqrt{22}=2\sqrt{22}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-2\sqrt{22}}{2*3}=\frac{-26-2\sqrt{22}}{6} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+2\sqrt{22}}{2*3}=\frac{-26+2\sqrt{22}}{6} $
| x+5+5=5x+4 | | -8(2+8x)-8x=-160 | | 13k-4k-2k-4k-2k=20 | | 5x-3+3x=5 | | y^2-12y+40=y | | (v-7)(v-1)=0 | | -3x^2(5/6+-1/2)=0 | | 0.9x+x=0.6 | | 1/5x(25x-20)=51 | | 5x−3+3x=5 | | 3(-8+5x)+2x=95 | | 5n-8=17-3n | | -9≤-2r-9=11 | | y=4+300 | | (p+6)(4p-3)=0 | | 16d-13d-4d=5 | | 7(6-4b)=154 | | 20+x+10=3x-4 | | -9-2r-9=11 | | 52-3x+x=19 | | –7+16s+15=8(2s+13) | | -3x2(5/6+-1/2)=0 | | -7(-3+5r)=231 | | 5-3x+4x=19 | | x²+x(4x+3)=3x-2 | | (t+7)(t−1)=0 | | 14z-3z-3z=16 | | 2k2+3k-14=0 | | (p+6)(4p−3)=0 | | |x-3|=-5 | | 2x-5+4x=7+6x | | 71=(x+20) |