If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3v^2+v=0
a = 3; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·3·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*3}=\frac{-2}{6} =-1/3 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*3}=\frac{0}{6} =0 $
| X/2l11=19 | | (r+2)/2+3r=3 | | (r+2)/6=r-2 | | (6x-2)/2=x | | (x+1)/5=x | | (7y-2)/3=y | | (z+2)/5=z | | 4+2s=(s-2)+1 | | 2j +4=10 | | -3(4t-5)+5t=4t-4 | | 1/3x(x-10)=-4 | | 5(3x+7)=7(x+2)=27 | | 11y−3=4y+11 | | -3(4x-3)+6=-12x+15 | | z+3÷4+2z=3 | | 2j+16=6j | | 4t+27=11t-1 | | r+2÷5=r-3 | | r+2/5=r-3 | | 8y+16(-1)=2 | | 8y+16(-1)=32 | | 4y-3(y+2)=10y | | 8y+16(-2)=32 | | s²+7s=0 | | 20-b2=3 | | 2=1.09^n | | 4(3-5n)-7(5-4n)=-3 | | T=7/3p+15 | | 3y+7=3+7y | | 2x+4=6+3x | | 4x^2+29x+52=0 | | -2+8x+4=9x+2-x* |