If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3w(w-5)+16=0
We multiply parentheses
3w^2-15w+16=0
a = 3; b = -15; c = +16;
Δ = b2-4ac
Δ = -152-4·3·16
Δ = 33
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-\sqrt{33}}{2*3}=\frac{15-\sqrt{33}}{6} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+\sqrt{33}}{2*3}=\frac{15+\sqrt{33}}{6} $
| 45605=0.33(b)(4.66)-24067 | | 3w-4/7=2 | | 50/20=5/r | | 3+2a=8(9-4a) | | 2x+16=9-7x | | 5x+7x-72=36-6 | | -1/2u+6=8-3/4u | | -(5b+4)=-9-5b | | 2b2–12=-5b | | 2n+14n=3n+6 | | 9v+2v-10v=10 | | 3x8=-9 | | 4x^2+16=96 | | 0=7e-7e | | 13t+17t+5t-20t+5t=-20 | | -7x+20=36 | | 10w+8^2=5 | | 38+7k=8(k+14 | | -7s+16s=18 | | 3+3(2x+1)+x=11x+3. | | 4(u-3)=6u-16 | | 3y+y+3y-6y+y=12 | | 90(a+3)-210=10(9a+6) | | 7=x=-12 | | y+4y-15=5(y-2) | | 8-3x-1=3(2x+3)-8x. | | -12r-19=77 | | 8q-8q+4q+q=20 | | (2x+15)+(x)+(3x-15)=180 | | 25x+10=240 | | 1533-6(8-6b)=0 | | 10x+25=240 |