If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3w-13=(1/4)(52-12w)
We move all terms to the left:
3w-13-((1/4)(52-12w))=0
Domain of the equation: 4)(52-12w))!=0We add all the numbers together, and all the variables
w∈R
3w-((+1/4)(-12w+52))-13=0
We multiply parentheses ..
-((-12w^2+1/4*52))+3w-13=0
We multiply all the terms by the denominator
-((-12w^2+1+3w*4*52))-13*4*52))=0
We calculate terms in parentheses: -((-12w^2+1+3w*4*52)), so:We add all the numbers together, and all the variables
(-12w^2+1+3w*4*52)
We get rid of parentheses
-12w^2+3w*4*52+1
Wy multiply elements
-12w^2+624w*5+1
Wy multiply elements
-12w^2+3120w+1
Back to the equation:
-(-12w^2+3120w+1)
-(-12w^2+3120w+1)=0
We get rid of parentheses
12w^2-3120w-1=0
a = 12; b = -3120; c = -1;
Δ = b2-4ac
Δ = -31202-4·12·(-1)
Δ = 9734448
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9734448}=\sqrt{16*608403}=\sqrt{16}*\sqrt{608403}=4\sqrt{608403}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3120)-4\sqrt{608403}}{2*12}=\frac{3120-4\sqrt{608403}}{24} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3120)+4\sqrt{608403}}{2*12}=\frac{3120+4\sqrt{608403}}{24} $
| 6e=18-2e | | x-11=-34 | | 3x+40+5x−52=180 | | -(3/8)+n=-(7/8) | | 6x+3x-12+30=90 | | 2r-9=155 | | 8g+2g-7g-2=13 | | 6x+5=95 | | 4h-3h+2h-h+2=14 | | (a+4)(a+6)=0 | | x/5-13=24 | | 58x+138=180 | | 13u-7u+3u=9 | | 6x−12=90 | | 2s+s+3s-3s=6 | | −6x+18=7−(4x+9) | | -13=¼+a | | 39=4/5x | | 17w-3w-9w=15 | | (-1+4x)^2=61 | | -325=-5(1+8n) | | 5m-2m-1=14 | | 13s-10s+3s+3=15 | | 8n-7n+5=14 | | 15g-6g+5=14 | | -4=v/6 | | x/8-Y=11 | | 4.5x=-3.6 | | 4.5x=3.6 | | 4.5x=-3.65 | | 18n-17n-n+2n-n=7 | | 3n^2-3n-10=-10 |