3w-1=1/4(12w)-+1

Simple and best practice solution for 3w-1=1/4(12w)-+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3w-1=1/4(12w)-+1 equation:



3w-1=1/4(12w)-+1
We move all terms to the left:
3w-1-(1/4(12w)-+1)=0
Domain of the equation: 412w-+1)!=0
w∈R
We add all the numbers together, and all the variables
3w-(+1/412w)-1=0
We get rid of parentheses
3w-1/412w-1=0
We multiply all the terms by the denominator
3w*412w-1*412w-1=0
Wy multiply elements
1236w^2-412w-1=0
a = 1236; b = -412; c = -1;
Δ = b2-4ac
Δ = -4122-4·1236·(-1)
Δ = 174688
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{174688}=\sqrt{16*10918}=\sqrt{16}*\sqrt{10918}=4\sqrt{10918}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-412)-4\sqrt{10918}}{2*1236}=\frac{412-4\sqrt{10918}}{2472} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-412)+4\sqrt{10918}}{2*1236}=\frac{412+4\sqrt{10918}}{2472} $

See similar equations:

| 3.2-4d=2.3d3 | | 7-4x=x-4(2+x) | | -3(2n+3)+3(3n+4)=-8 | | 4c+7+2c=6c-3 | | 2(5x-4)=5x+6 | | 2(5x-4)=7x+4 | | -1/2x^2=6x+20 | | n/1000=0.274 | | 28-7x=91 | | 9n=23+40 | | 9.75+8=13.5t+11 | | 4n+23=5n+40 | | 2(5x-4)=9x-17 | | 25(1-x)+x=30 | | –5y–2+y=10 | | 5(x+4)-5=4(x-3)+2(3x-1) | | -3x=-3+6 | | 6x-2=+13 | | -7(2y-3)+y=3(y+9) | | 2x-4+(2-x)=5x-5 | | 2(a-4)=4a-(2a-1 | | 3(2x-4)+2x=4x | | 2.8/n=0.028 | | -5(-4x+6)-7x=7(x-1)-9 | | 2.8÷n=0.028 | | 17=9x+16 | | 17x=16+9x | | 70x-100=850 | | 133=(x-7)+x+4(x-7) | | -16-6v=2(8v-7 | | -1/9(y+5)=3 | | 8x(3x)=40 |

Equations solver categories