If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3w^2-8w-16=0
a = 3; b = -8; c = -16;
Δ = b2-4ac
Δ = -82-4·3·(-16)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-16}{2*3}=\frac{-8}{6} =-1+1/3 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+16}{2*3}=\frac{24}{6} =4 $
| 3w2-8w-16=0 | | 3w2-8w-16=0 | | .36(s+50)=288 | | .36(s+50)=288 | | 3w2-8w-16=0 | | 3w2-8w-16=0 | | x+73+x+117=180 | | 9.7x+3-7.7x=5 | | 3w2-8w-16=0 | | 3w2-8w-16=0 | | 3w2-8w-16=0 | | 3w2-8w-16=0 | | 3w2-8w-16=0 | | x+108+×+88=180 | | 21x-4=180 | | 21-1-3s=8 | | 21-1-3s=8 | | 21-1-3s=8 | | -4-3x^2=71 | | g(-3)=2(3^3)-5 | | g(-3)=2(3^3)-5 | | g(-3)=2(3^3)-5 | | g(-3)=2(3^3)-5 | | g(-3)=2(3^3)-5 | | −6�−4=−6x−4= −10�−16−10x−16 | | T=14+16x+23=37+16x | | −5+B=h | | r÷3r=51 | | r÷3r=51 | | r÷3r=51 | | r÷3r=51 | | (6a-10)=130 |