3x(1+5x)=9-(2x+7)-x

Simple and best practice solution for 3x(1+5x)=9-(2x+7)-x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x(1+5x)=9-(2x+7)-x equation:


Simplifying
3x(1 + 5x) = 9 + -1(2x + 7) + -1x
(1 * 3x + 5x * 3x) = 9 + -1(2x + 7) + -1x
(3x + 15x2) = 9 + -1(2x + 7) + -1x

Reorder the terms:
3x + 15x2 = 9 + -1(7 + 2x) + -1x
3x + 15x2 = 9 + (7 * -1 + 2x * -1) + -1x
3x + 15x2 = 9 + (-7 + -2x) + -1x

Combine like terms: 9 + -7 = 2
3x + 15x2 = 2 + -2x + -1x

Combine like terms: -2x + -1x = -3x
3x + 15x2 = 2 + -3x

Solving
3x + 15x2 = 2 + -3x

Solving for variable 'x'.

Reorder the terms:
-2 + 3x + 3x + 15x2 = 2 + -3x + -2 + 3x

Combine like terms: 3x + 3x = 6x
-2 + 6x + 15x2 = 2 + -3x + -2 + 3x

Reorder the terms:
-2 + 6x + 15x2 = 2 + -2 + -3x + 3x

Combine like terms: 2 + -2 = 0
-2 + 6x + 15x2 = 0 + -3x + 3x
-2 + 6x + 15x2 = -3x + 3x

Combine like terms: -3x + 3x = 0
-2 + 6x + 15x2 = 0

Begin completing the square.  Divide all terms by
15 the coefficient of the squared term: 

Divide each side by '15'.
-0.1333333333 + 0.4x + x2 = 0

Move the constant term to the right:

Add '0.1333333333' to each side of the equation.
-0.1333333333 + 0.4x + 0.1333333333 + x2 = 0 + 0.1333333333

Reorder the terms:
-0.1333333333 + 0.1333333333 + 0.4x + x2 = 0 + 0.1333333333

Combine like terms: -0.1333333333 + 0.1333333333 = 0.0000000000
0.0000000000 + 0.4x + x2 = 0 + 0.1333333333
0.4x + x2 = 0 + 0.1333333333

Combine like terms: 0 + 0.1333333333 = 0.1333333333
0.4x + x2 = 0.1333333333

The x term is 0.4x.  Take half its coefficient (0.2).
Square it (0.04) and add it to both sides.

Add '0.04' to each side of the equation.
0.4x + 0.04 + x2 = 0.1333333333 + 0.04

Reorder the terms:
0.04 + 0.4x + x2 = 0.1333333333 + 0.04

Combine like terms: 0.1333333333 + 0.04 = 0.1733333333
0.04 + 0.4x + x2 = 0.1733333333

Factor a perfect square on the left side:
(x + 0.2)(x + 0.2) = 0.1733333333

Calculate the square root of the right side: 0.4163332

Break this problem into two subproblems by setting 
(x + 0.2) equal to 0.4163332 and -0.4163332.

Subproblem 1

x + 0.2 = 0.4163332 Simplifying x + 0.2 = 0.4163332 Reorder the terms: 0.2 + x = 0.4163332 Solving 0.2 + x = 0.4163332 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.2' to each side of the equation. 0.2 + -0.2 + x = 0.4163332 + -0.2 Combine like terms: 0.2 + -0.2 = 0.0 0.0 + x = 0.4163332 + -0.2 x = 0.4163332 + -0.2 Combine like terms: 0.4163332 + -0.2 = 0.2163332 x = 0.2163332 Simplifying x = 0.2163332

Subproblem 2

x + 0.2 = -0.4163332 Simplifying x + 0.2 = -0.4163332 Reorder the terms: 0.2 + x = -0.4163332 Solving 0.2 + x = -0.4163332 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.2' to each side of the equation. 0.2 + -0.2 + x = -0.4163332 + -0.2 Combine like terms: 0.2 + -0.2 = 0.0 0.0 + x = -0.4163332 + -0.2 x = -0.4163332 + -0.2 Combine like terms: -0.4163332 + -0.2 = -0.6163332 x = -0.6163332 Simplifying x = -0.6163332

Solution

The solution to the problem is based on the solutions from the subproblems. x = {0.2163332, -0.6163332}

See similar equations:

| -6x+2=-3 | | x^2-72x+35=0 | | 2/3*7/6 | | 1/7*11/5 | | 1/4*7/3 | | 21/8*1/9 | | 19x^2=5x | | 5-(4x+6)=2x | | x^2+8x+16=25 | | Q-q+q-q+3q=6 | | -10z=40 | | 1/4/7/9 | | 1/5x-35=x-7 | | (x+4)^2=81 | | 7-7x-2=-45+3x-10 | | 4x+8+7x+3 | | 4/9/1/2 | | -2=x/22 | | -3x+2=3x-2 | | 24*(x-4/8-1/3)=(x-1/8x-2x-1/3)*24 | | f-32=1 | | 0.4x-14.65=0.625x-20.5 | | [-13]-[9] | | 4(2x+1)=3(x-4) | | 24*(x-4/8-1/3) | | 3x^2+5x-10 | | 0.5(x-28)=12+7x | | (16x^4-4x^3+8x^2)÷(4x^2) | | 1/6(4x-130)=5x | | mc018-1.jpg | | x2+8x+16=25 | | 5x+5+3x-3 |

Equations solver categories