3x(10x-8)+2x(5x-12)+120=540

Simple and best practice solution for 3x(10x-8)+2x(5x-12)+120=540 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x(10x-8)+2x(5x-12)+120=540 equation:



3x(10x-8)+2x(5x-12)+120=540
We move all terms to the left:
3x(10x-8)+2x(5x-12)+120-(540)=0
We add all the numbers together, and all the variables
3x(10x-8)+2x(5x-12)-420=0
We multiply parentheses
30x^2+10x^2-24x-24x-420=0
We add all the numbers together, and all the variables
40x^2-48x-420=0
a = 40; b = -48; c = -420;
Δ = b2-4ac
Δ = -482-4·40·(-420)
Δ = 69504
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{69504}=\sqrt{64*1086}=\sqrt{64}*\sqrt{1086}=8\sqrt{1086}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-48)-8\sqrt{1086}}{2*40}=\frac{48-8\sqrt{1086}}{80} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-48)+8\sqrt{1086}}{2*40}=\frac{48+8\sqrt{1086}}{80} $

See similar equations:

| 4z+14=57 | | 6c-5=5c+5 | | 4p–8+4p+6=4 | | 6x-2x+2(3x)=22 | | -70=7d | | 12=3m+3+6 | | 6(6x-5)=-30-7x | | 4(d-14)+3=19 | | 5x=8x+45 | | 2n+20=4n+22 | | 4=2(7x-12) | | |2x|+9=13 | | k+7/3=2 | | n(A)=23,n(B)=27,n(U)=53 | | -8-5(n+8)=-8n-27 | | 13+6x=-29 | | Y=8x^2+16x+10 | | 3p-1+5p=7 | | -3(x+5)-7(2x+2)=56 | | 4x+3-8=22 | | 21=6(-3n+3)+3(1+4n) | | |9x-13|=|2x+16| | | 4=2(7x/12) | | 3(h-7+1=10 | | 1/2(x+2)+1/2(x+2)=x+2 | | -5(3-7m)-5(m-5)=10 | | 35-3x=29 | | 1/2(x+2)+1/2(x+x)=x+2 | | 12x+5400=88800 | | -4(n+4)+7(-6n+2)=-48 | | 165=3(6n+7) | | k/4=9=10 |

Equations solver categories