3x(2x+10)+(2x+5)+(2x-15)=360

Simple and best practice solution for 3x(2x+10)+(2x+5)+(2x-15)=360 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x(2x+10)+(2x+5)+(2x-15)=360 equation:



3x(2x+10)+(2x+5)+(2x-15)=360
We move all terms to the left:
3x(2x+10)+(2x+5)+(2x-15)-(360)=0
We multiply parentheses
6x^2+30x+(2x+5)+(2x-15)-360=0
We get rid of parentheses
6x^2+30x+2x+2x+5-15-360=0
We add all the numbers together, and all the variables
6x^2+34x-370=0
a = 6; b = 34; c = -370;
Δ = b2-4ac
Δ = 342-4·6·(-370)
Δ = 10036
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{10036}=\sqrt{4*2509}=\sqrt{4}*\sqrt{2509}=2\sqrt{2509}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(34)-2\sqrt{2509}}{2*6}=\frac{-34-2\sqrt{2509}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(34)+2\sqrt{2509}}{2*6}=\frac{-34+2\sqrt{2509}}{12} $

See similar equations:

| -10+10t=9-4t+9 | | 5c-6=4c-3 | | 3x(x-3)=99/11 | | 9514,56+1,76x=31786 | | 1000(7x-10)=50(348+100x) | | -2=m/3-4(1-3) | | 40=-1/3(9y+30)+2 | | 3(x*3)=99/11 | | (d/7)+8=-3 | | -4x=5(1-x/6 | | 2x-8+4x=2x | | (16x+3)=(4x-3) | | X^2+32x+102=0 | | 40=-1/3(9x30)+2 | | 1/6(x+1=11 | | 98x2=206 | | 7+2=4x-5x-9 | | 5(4y-6=10y | | 5x+20=3×-10 | | (7x+30)=9x | | 2y-5y+6=24 | | 4b+5(1+3b)=43 | | 3(x-8)+2=6-x | | 20/5=-4(y+10)+6y | | X^2/3=1-x^2 | | 10×-6y=22 | | 2(k-5)/4=4(k=2)/5 | | Y+4x=9;x=-2,0,4 | | 2-3x=(4/5) | | 7(5-n)+3n=32-7n | | 6y+2y=30 | | x2+(13)2=(39)2 |

Equations solver categories