If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x(2x+12)=48
We move all terms to the left:
3x(2x+12)-(48)=0
We multiply parentheses
6x^2+36x-48=0
a = 6; b = 36; c = -48;
Δ = b2-4ac
Δ = 362-4·6·(-48)
Δ = 2448
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2448}=\sqrt{144*17}=\sqrt{144}*\sqrt{17}=12\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-12\sqrt{17}}{2*6}=\frac{-36-12\sqrt{17}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+12\sqrt{17}}{2*6}=\frac{-36+12\sqrt{17}}{12} $
| 1=16-3p | | 2/10m=20/m | | 6w=34 | | 4n=5n+15=5n+7n | | -80=-15y-48 | | -1+5=-3x+-1 | | (x−1)2=(x−2)2−3 | | 3j—4=16 | | 41/11−x=25/11 | | 5f+3=2f-7 | | 15+.55x=20+.3x | | -2(q+-16)=14 | | y=1/416 | | 15x-8=-2x+7 | | 9/5C+32c=30 | | 9t-3t=6 | | -1=17-j | | 7x^2+44=100 | | -150x^2+110-20=0 | | 49r^2=64 | | 6+10y=86 | | 3x+4=-1+-6 | | -4+5x=-17-22x | | 5/3x^2=27/125 | | 11-4f=-5 | | y=16^2 | | -4+5x=17-22x | | 1/6x+1/4=2.875 | | 1/6x+1/4=21/8 | | 6x+4+4=14 | | 1/6x+1/4=27/8 | | 3x+x-2=121 |