If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x(2x+2)=54
We move all terms to the left:
3x(2x+2)-(54)=0
We multiply parentheses
6x^2+6x-54=0
a = 6; b = 6; c = -54;
Δ = b2-4ac
Δ = 62-4·6·(-54)
Δ = 1332
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1332}=\sqrt{36*37}=\sqrt{36}*\sqrt{37}=6\sqrt{37}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{37}}{2*6}=\frac{-6-6\sqrt{37}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{37}}{2*6}=\frac{-6+6\sqrt{37}}{12} $
| 7(n+1)+7=7(n+2) | | 24x+25=24x+24 | | 7.82-3.6x=0.2x+0.6 | | 3x*(2x+2)=54 | | 15=x-30 | | -4x+3+5x=-8+12 | | 3x+4x-4x=15 | | (3/x-4)-(2/x+3)=(3x-5/x^2-x-12 | | m+(4)=12 | | 5x-(6x-5)+(3x-6)²+(4x-7)=(4x-7)(2x-6)+x² | | 5/3=35/x | | 10.25=y/2 | | 8u(u–4)=0 | | 2/3s-4/3=s/6+2/3 | | 7x(x+4)=63 | | 17x-9x-36=3x-26 | | -19=m-2 | | 30=15+x | | 27=q–-5 | | n/16=36 | | 3=15n+2 | | -19=m=2 | | (x-5)/2=6 | | 4(x+3)−7=x+3(x+1) | | Y-8=-4(x+1) | | 2q+18=(-5q)-3 | | 9a=472 | | -1–5r–2r=-8r+7 | | 21+2(2n-14)=1 | | 2/3f=4 | | t6– 3= 1 | | 8x=2.2 |