If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x(2x+30)=180
We move all terms to the left:
3x(2x+30)-(180)=0
We multiply parentheses
6x^2+90x-180=0
a = 6; b = 90; c = -180;
Δ = b2-4ac
Δ = 902-4·6·(-180)
Δ = 12420
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12420}=\sqrt{36*345}=\sqrt{36}*\sqrt{345}=6\sqrt{345}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(90)-6\sqrt{345}}{2*6}=\frac{-90-6\sqrt{345}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(90)+6\sqrt{345}}{2*6}=\frac{-90+6\sqrt{345}}{12} $
| 6.99=0.55=x=11.94 | | X-10=o | | 9=3+x/2 | | x+x+x-x-x=9 | | z(z+8)=-22 | | -6-4f=4-5f | | 8x+50=12x-14 | | 11x-13=3x+3 | | 5x-2=-18@ | | .5y=1/3y+2 | | 3x+74=21 | | 2(x+5)^2+21=31 | | 6y+18+5y=2(y-3) | | 6(r+8)=-24 | | 6y+18+5y=2(y-3 | | t12=144 | | x+76+73+51+x=0 | | 126=2x+14 | | 11-2d=2 | | -16=6(v-2)-8v | | 15+p=44 | | 24x^2-49-40=0 | | -2,5y+1,3+1,2y=2,7y-3,1 | | 2(y-3)+5y=4y-14 | | (u+6)*8=80 | | -8-5h=-4h | | 5m7=23 | | (-3/x)+(1/7)=(-4/7x) | | 73+51+x+x+51=0 | | 3-4b=41 | | -2(x+1)=4(x+7) | | -3/x+1/7=-4/7x |