If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x(2x+5)=180
We move all terms to the left:
3x(2x+5)-(180)=0
We multiply parentheses
6x^2+15x-180=0
a = 6; b = 15; c = -180;
Δ = b2-4ac
Δ = 152-4·6·(-180)
Δ = 4545
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4545}=\sqrt{9*505}=\sqrt{9}*\sqrt{505}=3\sqrt{505}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-3\sqrt{505}}{2*6}=\frac{-15-3\sqrt{505}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+3\sqrt{505}}{2*6}=\frac{-15+3\sqrt{505}}{12} $
| u=u=1 | | b^2+32=5-12b | | -19k+20=-13-16k | | -2+7r=7r-10 | | 5x+24=360 | | 3(2f-4)=-36 | | 1u=1u | | a-14=3a-16 | | Y+5x=9x=-2,0,4 | | 6.3+18.1h=11.1h | | -3r-6=4+5r | | 12a+6a+8+6a+8+10a=102 | | 14r-8r+8=-6+5r | | ∣2x−9∣=x | | 4d^2-17=64 | | 2x•42=180 | | -3(4b+1)=-42 | | -8-13c=-14c | | -6v-12=2v+8 | | 6x−30+4x+50=90 | | -0.25(-x-12=2 | | z+19=73 | | v+6.3=8.84 | | 17-8t=-19-5t | | 12/8=1p/8 | | 49z^2=100 | | q^2+15=31 | | 24x+12-112x-28=3x-12 | | 0.75+5=0.5x+12 | | 10-3y-7=3y | | X=137.18+0.61x | | k^2=22-14k |