3x(2x+5)=3x/4+36

Simple and best practice solution for 3x(2x+5)=3x/4+36 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x(2x+5)=3x/4+36 equation:



3x(2x+5)=3x/4+36
We move all terms to the left:
3x(2x+5)-(3x/4+36)=0
We multiply parentheses
6x^2+15x-(3x/4+36)=0
We get rid of parentheses
6x^2+15x-3x/4-36=0
We multiply all the terms by the denominator
6x^2*4+15x*4-3x-36*4=0
We add all the numbers together, and all the variables
6x^2*4-3x+15x*4-144=0
Wy multiply elements
24x^2-3x+60x-144=0
We add all the numbers together, and all the variables
24x^2+57x-144=0
a = 24; b = 57; c = -144;
Δ = b2-4ac
Δ = 572-4·24·(-144)
Δ = 17073
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{17073}=\sqrt{9*1897}=\sqrt{9}*\sqrt{1897}=3\sqrt{1897}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(57)-3\sqrt{1897}}{2*24}=\frac{-57-3\sqrt{1897}}{48} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(57)+3\sqrt{1897}}{2*24}=\frac{-57+3\sqrt{1897}}{48} $

See similar equations:

| (7x-5)=(5x+11) | | (7x-5)=5x+11 | | F(x)=3x³-x²+x-4 | | x-20+x+2=180 | | y2-2y-48=0 | | x+53+x+63=180 | | 47n^-5n=0 | | x+17+x+49=180 | | 93+(x+24)=180 | | 3x-2=19+2 | | 86+(x+33)=180 | | x+28+x+8=180 | | 5x^2-96x+576=0 | | x+92+×+112=180 | | 3a-15=60 | | 15x-150=570 | | x+92+×+68=180 | | 4605.05=x+(x*0.15) | | 3x^2-32x+192=0 | | X+71+x+29=180 | | x+1=0.75x+12 | | 9x^2-96x+576=0 | | 9x^2-96x+144=0 | | 3+8*x=35 | | 3+8×x=35 | | x+(4/3x-5)+(4/3x)=85 | | 76x-152=76 | | 75x675=1275 | | -6n=-24/4 | | 3/10^x=10^x | | a2-14a+40=0 | | 5x^2-48x-144=0 |

Equations solver categories