3x(2x-10)=2(2x-12)

Simple and best practice solution for 3x(2x-10)=2(2x-12) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x(2x-10)=2(2x-12) equation:



3x(2x-10)=2(2x-12)
We move all terms to the left:
3x(2x-10)-(2(2x-12))=0
We multiply parentheses
6x^2-30x-(2(2x-12))=0
We calculate terms in parentheses: -(2(2x-12)), so:
2(2x-12)
We multiply parentheses
4x-24
Back to the equation:
-(4x-24)
We get rid of parentheses
6x^2-30x-4x+24=0
We add all the numbers together, and all the variables
6x^2-34x+24=0
a = 6; b = -34; c = +24;
Δ = b2-4ac
Δ = -342-4·6·24
Δ = 580
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{580}=\sqrt{4*145}=\sqrt{4}*\sqrt{145}=2\sqrt{145}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-34)-2\sqrt{145}}{2*6}=\frac{34-2\sqrt{145}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-34)+2\sqrt{145}}{2*6}=\frac{34+2\sqrt{145}}{12} $

See similar equations:

| x=4(3x-55) | | 3x+5=2xnbsp;-12 | | 6x-2=3x+37 | | -4(-4y+4)=-96 | | 1/6x+2=-1 | | Y=7x4-5 | | 19x+5=10-6x | | x+7.5=9.7 | | 3/x=21/70 | | R(16)=-0.1^2+90x | | (2x-7)=(5x+3) | | 40+x/100=64. | | 10x^2-7x-40=0 | | 2.5x+5=6.3 | | 7/2x+141/2=7/x-10 | | 19/8-7m=15 | | 9y/7-9+2=5y/y-9 | | (X+.25x)+x=140000 | | 4x+4=(7x+5)/22 | | 3x=6x=10x | | x-(4+5x)=3/5(2x-7)+5 | | 3x+18+39=60 | | 2^(x^2-1)=0 | | 2^x^2-1=0 | | (x+3)/(5)-(1+x)/(8)=-(9)/(10) | | 15/4-8x=9 | | X-(.02x)=38600 | | (8x+7)+10=8 | | 4-(9x-9)=-10(x+1)-8 | | 28+7x=3x-4 | | 21x-26-2x=23+19x-49 | | -5x+20x=0 |

Equations solver categories