3x(2x-3)-7=9-3(4x-5)

Simple and best practice solution for 3x(2x-3)-7=9-3(4x-5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x(2x-3)-7=9-3(4x-5) equation:



3x(2x-3)-7=9-3(4x-5)
We move all terms to the left:
3x(2x-3)-7-(9-3(4x-5))=0
We multiply parentheses
6x^2-9x-(9-3(4x-5))-7=0
We calculate terms in parentheses: -(9-3(4x-5)), so:
9-3(4x-5)
determiningTheFunctionDomain -3(4x-5)+9
We multiply parentheses
-12x+15+9
We add all the numbers together, and all the variables
-12x+24
Back to the equation:
-(-12x+24)
We get rid of parentheses
6x^2-9x+12x-24-7=0
We add all the numbers together, and all the variables
6x^2+3x-31=0
a = 6; b = 3; c = -31;
Δ = b2-4ac
Δ = 32-4·6·(-31)
Δ = 753
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{753}}{2*6}=\frac{-3-\sqrt{753}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{753}}{2*6}=\frac{-3+\sqrt{753}}{12} $

See similar equations:

| 2x-4=-x | | 2(t-4)-4=12 | | 9=3.14d | | 10x-144=4x-12 | | 170=7u | | -13d-10=-12d | | 6s+8=15s-10 | | 170=u7 | | 1.25(x+2)=20 | | x+4x=2x+96 | | 4=-13+x | | 2(v-16)+6=12 | | 25x-(3000+20x-0.1x^2)=1 | | 12+14f=18f | | 19x+27=14x+3 | | 35=13y | | 9-t=-1 | | -3-8s=-5s | | x(25)-(3000+20x-0.1x^2)=1 | | (-8)-6x=34 | | 221=11v | | x+4x-6=57 | | -2w-15=-w | | 10/17=12/x | | 13/v=11/17 | | 1.43=x(36.23) | | -g+11=-12g | | -15t+17t=-8 | | 13-s=14 | | r/2=10/4 | | 25x-3000-20x+0.1x^2=1 | | 20=2(4x+2) |

Equations solver categories