3x(2x-7)-4x(5-2x)=3x+3

Simple and best practice solution for 3x(2x-7)-4x(5-2x)=3x+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x(2x-7)-4x(5-2x)=3x+3 equation:



3x(2x-7)-4x(5-2x)=3x+3
We move all terms to the left:
3x(2x-7)-4x(5-2x)-(3x+3)=0
We add all the numbers together, and all the variables
3x(2x-7)-4x(-2x+5)-(3x+3)=0
We multiply parentheses
6x^2+8x^2-21x-20x-(3x+3)=0
We get rid of parentheses
6x^2+8x^2-21x-20x-3x-3=0
We add all the numbers together, and all the variables
14x^2-44x-3=0
a = 14; b = -44; c = -3;
Δ = b2-4ac
Δ = -442-4·14·(-3)
Δ = 2104
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2104}=\sqrt{4*526}=\sqrt{4}*\sqrt{526}=2\sqrt{526}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-44)-2\sqrt{526}}{2*14}=\frac{44-2\sqrt{526}}{28} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-44)+2\sqrt{526}}{2*14}=\frac{44+2\sqrt{526}}{28} $

See similar equations:

| 1/3b=14 | | 6(x+2)/5=3x-1 | | X^3+3x^2-6=0 | | 4(r+20)=-(-4r-80) | | 1*y=1.3 | | (3-8x)(8x-1)=0 | | 4-1/2x=3/5x+7/3 | | 8x^2-57x+54=0 | | 480+48x=40x | | 3x+6/x-1=0 | | (5-2x)(x-5)=0 | | 3x-2=-4.4 | | 4/x^+7/x^=13 | | 2/x+3=12 | | x+4.5=-17.75 | | 5x^2+68x+4=0 | | x*1.1=500 | | 8+5x=-3 | | 4=1.25x-3 | | 6x−14=28 | | 25.1=2πr | | 2(y-8)/3=-3y | | 5(x-2)=3((x+4) | | 8y+3y(y-5)=3(y+2)-2 | | 6k+5=2k+1= | | 5⋅(x+6)=35 | | 10x-10-6x=6-5x | | −2x=68 | | 2(x+2)/3-5/4=5/4x-1 | | 3x=−36 | | 2+3x÷5=6+x÷4 | | 2x-10+2x=19x+4 |

Equations solver categories