3x(3x+1)=x-6(9x-2)

Simple and best practice solution for 3x(3x+1)=x-6(9x-2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x(3x+1)=x-6(9x-2) equation:



3x(3x+1)=x-6(9x-2)
We move all terms to the left:
3x(3x+1)-(x-6(9x-2))=0
We multiply parentheses
9x^2+3x-(x-6(9x-2))=0
We calculate terms in parentheses: -(x-6(9x-2)), so:
x-6(9x-2)
We multiply parentheses
x-54x+12
We add all the numbers together, and all the variables
-53x+12
Back to the equation:
-(-53x+12)
We get rid of parentheses
9x^2+3x+53x-12=0
We add all the numbers together, and all the variables
9x^2+56x-12=0
a = 9; b = 56; c = -12;
Δ = b2-4ac
Δ = 562-4·9·(-12)
Δ = 3568
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3568}=\sqrt{16*223}=\sqrt{16}*\sqrt{223}=4\sqrt{223}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(56)-4\sqrt{223}}{2*9}=\frac{-56-4\sqrt{223}}{18} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(56)+4\sqrt{223}}{2*9}=\frac{-56+4\sqrt{223}}{18} $

See similar equations:

| (25/4)^x=8/125 | | 16=-m | | 21=5r-9 | | X×y=-68 | | 5(3x+1)+4=x+27 | | 3(4a-12)=12 | | 2a-16=2+5 | | 2^(2x-4)=64 | | (-8+3)+(6x+3)+(9x+12)=180 | | (y+10)^2+y^2=2500 | | -8x+5=43 | | 5x16+x=× | | 2^n=20^8 | | 2^n=20^20 | | X+4x-6+11=0 | | (x+5)+(x+15)+(10x-20)=180 | | 0,25z=100 | | 7x+3=3x-10 | | -3x-5x=2x-18 | | x/7=0,3 | | x/0,2=50 | | 135=s-120 | | -36+6x12/(-4)-5=-59 | | 2x^+8^-5=91 | | 2^x+^8-5=91 | | (5x/3)+6=(3x)/15 | | 2√x+√8-5=91 | | 4^x=1÷32 | | t+6 +6= 8t5 4 | | 180-y=99-9y | | 6y-13=11(y-3) | | 2(3x-5)=10×+14 |

Equations solver categories