If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x(3x+15)=0
We multiply parentheses
9x^2+45x=0
a = 9; b = 45; c = 0;
Δ = b2-4ac
Δ = 452-4·9·0
Δ = 2025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2025}=45$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(45)-45}{2*9}=\frac{-90}{18} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(45)+45}{2*9}=\frac{0}{18} =0 $
| x(x+1)=295 | | 9x-17=2x-3 | | 5n=54n+54 | | 3x1=1 | | 1x+.5=15 | | 1x+1/2=10 | | (x-3)(x-4)=3x+12 | | x*0,6=23 | | x/0,6=23 | | (x-4)^2-36=0 | | 9w+7=4w-43 | | 6f+6=5f+6 | | -13=g-4 | | -1=-10+c | | 3y+47=10y-2 | | 5(z+10)=25 | | 12=4(k-7) | | a6+8=10 | | 3=2m+1 | | 11z-8z=18 | | 7c-5c=16 | | 2/3(h-8)=52 | | 4c–2c=18 | | 6j-5j=3 | | X4-17x2+16=0 | | 2(a+3)=2a-17 | | (126+x)/9=16 | | 18+-2s=94 | | -17=6p-8 | | h/3-53=-44 | | 2(x-3)+3x=0 | | n/3+22=20 |