If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x(4-5x)=(2x-3)(5x-4)
We move all terms to the left:
3x(4-5x)-((2x-3)(5x-4))=0
We add all the numbers together, and all the variables
3x(-5x+4)-((2x-3)(5x-4))=0
We multiply parentheses
-15x^2+12x-((2x-3)(5x-4))=0
We multiply parentheses ..
-15x^2-((+10x^2-8x-15x+12))+12x=0
We calculate terms in parentheses: -((+10x^2-8x-15x+12)), so:We add all the numbers together, and all the variables
(+10x^2-8x-15x+12)
We get rid of parentheses
10x^2-8x-15x+12
We add all the numbers together, and all the variables
10x^2-23x+12
Back to the equation:
-(10x^2-23x+12)
-15x^2+12x-(10x^2-23x+12)=0
We get rid of parentheses
-15x^2-10x^2+12x+23x-12=0
We add all the numbers together, and all the variables
-25x^2+35x-12=0
a = -25; b = 35; c = -12;
Δ = b2-4ac
Δ = 352-4·(-25)·(-12)
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-5}{2*-25}=\frac{-40}{-50} =4/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+5}{2*-25}=\frac{-30}{-50} =3/5 $
| 10x^2-23x+12=-15x^2+12x | | X-(5x+2)=3x-3 | | 85+2x-17=180 | | 2X+12=x/3+27 | | |x^2-3x-20|=-x^2+3x+2 | | -x2+10x+1=0 | | (6x+1)(3x+2)=(9x-1)(2x+5)-3x | | X÷2-x÷5=3 | | 10(7)=n | | 7t=t+8 | | 5x+7+4x+11+3x=54 | | 2x+10+5x+30=180 | | 2x-15+45=180 | | 3x+20+2x+10=90 | | F(x)=5x^2-4x^2+10 | | (x-5)^2-3x+15=0 | | 6/8=3a/22 | | 6.3x+7=12 | | 6=-3/4x+6 | | 21÷f=3 | | 15+5b=50 | | 2a/13=2 | | 12=3t/6+7 | | E-7y=31 | | 12=3t+7 | | (2x-1)(x-3)=-2 | | y(2/3)-4=-3 | | x-8*5=25 | | x2+6x-216=0 | | x+x=8+x-x+6 | | x-8x5=25 | | x2+6x-25=0 |