3x(4x+10)=7x-6

Simple and best practice solution for 3x(4x+10)=7x-6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x(4x+10)=7x-6 equation:


Simplifying
3x(4x + 10) = 7x + -6

Reorder the terms:
3x(10 + 4x) = 7x + -6
(10 * 3x + 4x * 3x) = 7x + -6
(30x + 12x2) = 7x + -6

Reorder the terms:
30x + 12x2 = -6 + 7x

Solving
30x + 12x2 = -6 + 7x

Solving for variable 'x'.

Reorder the terms:
6 + 30x + -7x + 12x2 = -6 + 7x + 6 + -7x

Combine like terms: 30x + -7x = 23x
6 + 23x + 12x2 = -6 + 7x + 6 + -7x

Reorder the terms:
6 + 23x + 12x2 = -6 + 6 + 7x + -7x

Combine like terms: -6 + 6 = 0
6 + 23x + 12x2 = 0 + 7x + -7x
6 + 23x + 12x2 = 7x + -7x

Combine like terms: 7x + -7x = 0
6 + 23x + 12x2 = 0

Begin completing the square.  Divide all terms by
12 the coefficient of the squared term: 

Divide each side by '12'.
0.5 + 1.916666667x + x2 = 0

Move the constant term to the right:

Add '-0.5' to each side of the equation.
0.5 + 1.916666667x + -0.5 + x2 = 0 + -0.5

Reorder the terms:
0.5 + -0.5 + 1.916666667x + x2 = 0 + -0.5

Combine like terms: 0.5 + -0.5 = 0.0
0.0 + 1.916666667x + x2 = 0 + -0.5
1.916666667x + x2 = 0 + -0.5

Combine like terms: 0 + -0.5 = -0.5
1.916666667x + x2 = -0.5

The x term is 1.916666667x.  Take half its coefficient (0.9583333335).
Square it (0.9184027781) and add it to both sides.

Add '0.9184027781' to each side of the equation.
1.916666667x + 0.9184027781 + x2 = -0.5 + 0.9184027781

Reorder the terms:
0.9184027781 + 1.916666667x + x2 = -0.5 + 0.9184027781

Combine like terms: -0.5 + 0.9184027781 = 0.4184027781
0.9184027781 + 1.916666667x + x2 = 0.4184027781

Factor a perfect square on the left side:
(x + 0.9583333335)(x + 0.9583333335) = 0.4184027781

Calculate the square root of the right side: 0.646840613

Break this problem into two subproblems by setting 
(x + 0.9583333335) equal to 0.646840613 and -0.646840613.

Subproblem 1

x + 0.9583333335 = 0.646840613 Simplifying x + 0.9583333335 = 0.646840613 Reorder the terms: 0.9583333335 + x = 0.646840613 Solving 0.9583333335 + x = 0.646840613 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.9583333335' to each side of the equation. 0.9583333335 + -0.9583333335 + x = 0.646840613 + -0.9583333335 Combine like terms: 0.9583333335 + -0.9583333335 = 0.0000000000 0.0000000000 + x = 0.646840613 + -0.9583333335 x = 0.646840613 + -0.9583333335 Combine like terms: 0.646840613 + -0.9583333335 = -0.3114927205 x = -0.3114927205 Simplifying x = -0.3114927205

Subproblem 2

x + 0.9583333335 = -0.646840613 Simplifying x + 0.9583333335 = -0.646840613 Reorder the terms: 0.9583333335 + x = -0.646840613 Solving 0.9583333335 + x = -0.646840613 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.9583333335' to each side of the equation. 0.9583333335 + -0.9583333335 + x = -0.646840613 + -0.9583333335 Combine like terms: 0.9583333335 + -0.9583333335 = 0.0000000000 0.0000000000 + x = -0.646840613 + -0.9583333335 x = -0.646840613 + -0.9583333335 Combine like terms: -0.646840613 + -0.9583333335 = -1.6051739465 x = -1.6051739465 Simplifying x = -1.6051739465

Solution

The solution to the problem is based on the solutions from the subproblems. x = {-0.3114927205, -1.6051739465}

See similar equations:

| 17x-5=6x+28u | | -(-7k+3)=3(5+10k) | | 70-5x=4x+24 | | z^2-8z-12=0 | | -3=3x-18 | | 9=-(2-9t)+t | | 8x+6=bx-7 | | 5k-2=43 | | x^2(x+5)-870=0 | | 99-4x=14-9x | | 149-4x=41x+24 | | x^2(x+5)=870 | | -15=-7+4x | | x^2(x+5)=879 | | x^2-11x=2 | | 4(-6p+3)=-10p+7 | | 10N-26=74 | | -t-(1+6t)=-10 | | 5(x+2)(3-x)=0 | | 2(x+1)+4(3x-6)=34 | | 62-4x=7-10x | | 20+8[q-11]=-12 | | 8x-62=5x-8 | | 9y^2-4x^2-36=0 | | 117-6x=39x+12 | | p(x)=-.04x^2+80x-1600 | | 0=X^2-6x+7 | | (2a-5)(3a+1)= | | 105-2x=16x+23 | | 3x-2=-29 | | 115-3x+5x=11 | | 2[a+7]-7=9 |

Equations solver categories