If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x(4x+2)=144
We move all terms to the left:
3x(4x+2)-(144)=0
We multiply parentheses
12x^2+6x-144=0
a = 12; b = 6; c = -144;
Δ = b2-4ac
Δ = 62-4·12·(-144)
Δ = 6948
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6948}=\sqrt{36*193}=\sqrt{36}*\sqrt{193}=6\sqrt{193}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{193}}{2*12}=\frac{-6-6\sqrt{193}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{193}}{2*12}=\frac{-6+6\sqrt{193}}{24} $
| 45=6z | | 12=25z | | 5x+2(1-x)=2(2x+1)-1x | | y=2035 | | 16=–(x+4)–3(–2–5x) | | 8+2h−4=24 | | -11=v/3 | | 12=4x*8 | | 25+r=-5(2+8r)=6r | | 11+4x=11.5+2x | | –6x–12=24–3x | | -6−4d=-5d−7 | | y=7(X)-3 | | 5x-27+7x-32+9x-8=180 | | (2/3)y=42 | | 42=2/3y | | 3s+71.83=7.99 | | 42=(2/3)y | | 3x=249 | | 7−5+3x−1=5x+3 | | 8x-6=234 | | 10x-4+x+11=180 | | -112=-10m+8 | | 10x-4=x+11 | | 0.6+0.3x=0.9 | | 11w=9w+4 | | x+11=10x-4 | | q+4=q | | 57=-3(4v+1)=2v | | 4x+75=19x | | 10x-4=4x-22 | | x=32+4/5 |