If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 3x(5 + 3x) = 10 (5 * 3x + 3x * 3x) = 10 (15x + 9x2) = 10 Solving 15x + 9x2 = 10 Solving for variable 'x'. Reorder the terms: -10 + 15x + 9x2 = 10 + -10 Combine like terms: 10 + -10 = 0 -10 + 15x + 9x2 = 0 Begin completing the square. Divide all terms by 9 the coefficient of the squared term: Divide each side by '9'. -1.111111111 + 1.666666667x + x2 = 0 Move the constant term to the right: Add '1.111111111' to each side of the equation. -1.111111111 + 1.666666667x + 1.111111111 + x2 = 0 + 1.111111111 Reorder the terms: -1.111111111 + 1.111111111 + 1.666666667x + x2 = 0 + 1.111111111 Combine like terms: -1.111111111 + 1.111111111 = 0.000000000 0.000000000 + 1.666666667x + x2 = 0 + 1.111111111 1.666666667x + x2 = 0 + 1.111111111 Combine like terms: 0 + 1.111111111 = 1.111111111 1.666666667x + x2 = 1.111111111 The x term is 1.666666667x. Take half its coefficient (0.8333333335). Square it (0.6944444447) and add it to both sides. Add '0.6944444447' to each side of the equation. 1.666666667x + 0.6944444447 + x2 = 1.111111111 + 0.6944444447 Reorder the terms: 0.6944444447 + 1.666666667x + x2 = 1.111111111 + 0.6944444447 Combine like terms: 1.111111111 + 0.6944444447 = 1.8055555557 0.6944444447 + 1.666666667x + x2 = 1.8055555557 Factor a perfect square on the left side: (x + 0.8333333335)(x + 0.8333333335) = 1.8055555557 Calculate the square root of the right side: 1.343709625 Break this problem into two subproblems by setting (x + 0.8333333335) equal to 1.343709625 and -1.343709625.Subproblem 1
x + 0.8333333335 = 1.343709625 Simplifying x + 0.8333333335 = 1.343709625 Reorder the terms: 0.8333333335 + x = 1.343709625 Solving 0.8333333335 + x = 1.343709625 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + x = 1.343709625 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + x = 1.343709625 + -0.8333333335 x = 1.343709625 + -0.8333333335 Combine like terms: 1.343709625 + -0.8333333335 = 0.5103762915 x = 0.5103762915 Simplifying x = 0.5103762915Subproblem 2
x + 0.8333333335 = -1.343709625 Simplifying x + 0.8333333335 = -1.343709625 Reorder the terms: 0.8333333335 + x = -1.343709625 Solving 0.8333333335 + x = -1.343709625 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + x = -1.343709625 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + x = -1.343709625 + -0.8333333335 x = -1.343709625 + -0.8333333335 Combine like terms: -1.343709625 + -0.8333333335 = -2.1770429585 x = -2.1770429585 Simplifying x = -2.1770429585Solution
The solution to the problem is based on the solutions from the subproblems. x = {0.5103762915, -2.1770429585}
| 4t^2+12t+8=0 | | 1-5(7k+4)=-299 | | -2w-5w=4 | | g(w)=-2w^2-8w+1 | | 7x+8=-16+24y | | 5a+eb=7 | | 5x+15=25x+5 | | 35x=85x-5 | | -2x+x=16 | | 2x+9y=48 | | 18y+9=3x+6 | | 17+3=14 | | 3x^2-5x=50 | | 2x-3x+5x=32 | | 4k+14=2 | | (2/3)n=4(n-2) | | 4(4x+1)=684 | | 3(x+1)+1+2x=2(2x+2)+c | | 10+4x=16x+8 | | 4x-y=-6 | | 5p=6.25-5r | | 5(n+2)=3(n-4) | | 7x^2+24=y-6x*(2-3x^2) | | p=3x-(100+2) | | 5(x+2)=4(3x-2) | | 7c+2-6c=-28+6 | | 7(m+2)-4m=2(m+10) | | .25x+y=225 | | z^3=4z | | 27=7-10x | | 9x-10=+14 | | 3(x-5)+19=22 |