If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 3x(5 + 3x) = 9 (5 * 3x + 3x * 3x) = 9 (15x + 9x2) = 9 Solving 15x + 9x2 = 9 Solving for variable 'x'. Reorder the terms: -9 + 15x + 9x2 = 9 + -9 Combine like terms: 9 + -9 = 0 -9 + 15x + 9x2 = 0 Factor out the Greatest Common Factor (GCF), '3'. 3(-3 + 5x + 3x2) = 0 Ignore the factor 3.Subproblem 1
Set the factor '(-3 + 5x + 3x2)' equal to zero and attempt to solve: Simplifying -3 + 5x + 3x2 = 0 Solving -3 + 5x + 3x2 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. -1 + 1.666666667x + x2 = 0 Move the constant term to the right: Add '1' to each side of the equation. -1 + 1.666666667x + 1 + x2 = 0 + 1 Reorder the terms: -1 + 1 + 1.666666667x + x2 = 0 + 1 Combine like terms: -1 + 1 = 0 0 + 1.666666667x + x2 = 0 + 1 1.666666667x + x2 = 0 + 1 Combine like terms: 0 + 1 = 1 1.666666667x + x2 = 1 The x term is 1.666666667x. Take half its coefficient (0.8333333335). Square it (0.6944444447) and add it to both sides. Add '0.6944444447' to each side of the equation. 1.666666667x + 0.6944444447 + x2 = 1 + 0.6944444447 Reorder the terms: 0.6944444447 + 1.666666667x + x2 = 1 + 0.6944444447 Combine like terms: 1 + 0.6944444447 = 1.6944444447 0.6944444447 + 1.666666667x + x2 = 1.6944444447 Factor a perfect square on the left side: (x + 0.8333333335)(x + 0.8333333335) = 1.6944444447 Calculate the square root of the right side: 1.301708279 Break this problem into two subproblems by setting (x + 0.8333333335) equal to 1.301708279 and -1.301708279.Subproblem 1
x + 0.8333333335 = 1.301708279 Simplifying x + 0.8333333335 = 1.301708279 Reorder the terms: 0.8333333335 + x = 1.301708279 Solving 0.8333333335 + x = 1.301708279 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + x = 1.301708279 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + x = 1.301708279 + -0.8333333335 x = 1.301708279 + -0.8333333335 Combine like terms: 1.301708279 + -0.8333333335 = 0.4683749455 x = 0.4683749455 Simplifying x = 0.4683749455Subproblem 2
x + 0.8333333335 = -1.301708279 Simplifying x + 0.8333333335 = -1.301708279 Reorder the terms: 0.8333333335 + x = -1.301708279 Solving 0.8333333335 + x = -1.301708279 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + x = -1.301708279 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + x = -1.301708279 + -0.8333333335 x = -1.301708279 + -0.8333333335 Combine like terms: -1.301708279 + -0.8333333335 = -2.1350416125 x = -2.1350416125 Simplifying x = -2.1350416125Solution
The solution to the problem is based on the solutions from the subproblems. x = {0.4683749455, -2.1350416125}Solution
x = {0.4683749455, -2.1350416125}
| 2(2x-5)+5x=2x-3(x+2) | | 4x^3+12x^2-19x-12=0 | | 8w-3w+6=-34 | | 15x=-17 | | R(r+8.7)=721.3 | | 4x^2-40x+55=0 | | 4x^3+16x^2-3x-12=0 | | x^2y+x^3-6xy^2=0 | | x^2-6x-4=6 | | 7x+3*0=-16 | | 4b+8=10b-18 | | t^2=6t+43 | | 4b=10b-8 | | -3mn+m^2+2n^2=0 | | 2w^2+w=12 | | c^2+7cd-18d^2=0 | | w=48+(4/7)w | | 10-2q=1.5q+1 | | =(x+9)(9x+1) | | 3.2x=22.2 | | 6x+y^2=42 | | f(x)=50/x^2-25 | | 3x^2y+27xy-87y=0 | | 4[X+7]=80 | | 12x12x5y4z2/18x^1y^7z^2 | | 1=3/2Q+1 | | 1=10-2Q | | -13y+11x=3 | | x(2-x)=15 | | -13+11x=3 | | P=10+2 | | cos^2x-sin^2x=-1/5 |