If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x(5x+2)=35
We move all terms to the left:
3x(5x+2)-(35)=0
We multiply parentheses
15x^2+6x-35=0
a = 15; b = 6; c = -35;
Δ = b2-4ac
Δ = 62-4·15·(-35)
Δ = 2136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2136}=\sqrt{4*534}=\sqrt{4}*\sqrt{534}=2\sqrt{534}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{534}}{2*15}=\frac{-6-2\sqrt{534}}{30} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{534}}{2*15}=\frac{-6+2\sqrt{534}}{30} $
| -7x+2=-3(x-3)-4x+7 | | 2v−3= | | 3x(2x-1)=35 | | 13c+-14c-4=10 | | 3(n+22)=12n+30 | | 7x–3=5x | | 420/n=84 | | 11x–9=3x–9 | | 19s-10s+2s+s-8s=12 | | 2/3(6x-9)=4x-6 | | 5(2x–3)=7x+3 | | 7x+5=3x+13C | | 8−2m=2 | | 15p-9p-p+4p=18 | | O.375c-11=13 | | -2x^2(x+46x(x+1=0 | | 7x+5=2(4x=3) | | 4a+2a-3a=18 | | 13x-3=10x=6 | | 2x+40+(x-10)=180 | | 5x+7+3x=−8+3x | | y=-2y+9 | | .5x+15=90 | | 6(n+3)=4(3n+3) | | y/4-6=10 | | 2h–14=2 | | 3n²=0 | | 2x+22+5x-17+x=180 | | 5t^2+30t-45=0 | | 4/5x+3=-1/4x-1= | | 11p^2+7p-16=0 | | (x*x)+5x−66=0 |