If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x(5x+20)=360
We move all terms to the left:
3x(5x+20)-(360)=0
We multiply parentheses
15x^2+60x-360=0
a = 15; b = 60; c = -360;
Δ = b2-4ac
Δ = 602-4·15·(-360)
Δ = 25200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{25200}=\sqrt{3600*7}=\sqrt{3600}*\sqrt{7}=60\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-60\sqrt{7}}{2*15}=\frac{-60-60\sqrt{7}}{30} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+60\sqrt{7}}{2*15}=\frac{-60+60\sqrt{7}}{30} $
| 4.9t^2+15t+33=5 | | 9+3(7x-3(6+6x))=0 | | 2n=n^2-6n-20 | | 75/4=n | | -3.2+z=-7.2 | | 3=d–2 | | v(-17)=21 | | 9+3(7x-3(6+6x))=1 | | (5x+20)3x=360 | | X-0.20x=56 | | 3-5(1+3x)=58 | | 1/4n+8=6 | | x+(4x/3)=42 | | -8x^2+16=0 | | 46+4x=11+9x | | 2x-1+x=3x+2 | | u–3=2 | | r/5-2=9 | | −3(3+x)+4(x−6)=−4−3(3+x)+4(x−6)=−4 | | 14.5-0.4j+1.8-1.3j=18-1.7j-6.6 | | k+1=19 | | -0.2n-(1.2-n)=0.4 | | 25c−8=4 | | 27+12x=16x+3 | | -5(x)=2x+1 | | 93=11^x | | −6(9−w)=2(3w−7)−6(9−w)=2(3w−7) | | 14+2n=4n+8(1-n | | -2(x+2)=-16+4x | | p/6+p=14 | | 5-15x-60=8 | | 16+2j+j-10=11j+13-8j-7 |