3x(5x-9)=7-4(x+1)

Simple and best practice solution for 3x(5x-9)=7-4(x+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x(5x-9)=7-4(x+1) equation:



3x(5x-9)=7-4(x+1)
We move all terms to the left:
3x(5x-9)-(7-4(x+1))=0
We multiply parentheses
15x^2-27x-(7-4(x+1))=0
We calculate terms in parentheses: -(7-4(x+1)), so:
7-4(x+1)
determiningTheFunctionDomain -4(x+1)+7
We multiply parentheses
-4x-4+7
We add all the numbers together, and all the variables
-4x+3
Back to the equation:
-(-4x+3)
We get rid of parentheses
15x^2-27x+4x-3=0
We add all the numbers together, and all the variables
15x^2-23x-3=0
a = 15; b = -23; c = -3;
Δ = b2-4ac
Δ = -232-4·15·(-3)
Δ = 709
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-23)-\sqrt{709}}{2*15}=\frac{23-\sqrt{709}}{30} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-23)+\sqrt{709}}{2*15}=\frac{23+\sqrt{709}}{30} $

See similar equations:

| x/3-x+2/7=2 | | s^2+5s-3=0 | | 48=64t-16t^2 | | 2y^2-8=14-9y | | 0.5x-3.5=0.2x-0.5= | | 3x+4+3x+2=9x-3 | | 168+5x-48=180 | | 28=x/2+7 | | 9*x+1=8x | | 2x-1=3x+12 | | -12-6r=4(4r-3) | | 2(3x+9)=-33+3 | | 124÷x=-124 | | 2x-3x+15=90 | | 7x=17.5x= | | X=-4+3y | | 2x+3x+15x=90 | | 2h/3-156=3+13/24 | | 9+y=41/2 | | 2h/3-156=3+ | | 50x+16=216 | | 9a=5a+4 | | 17.5/20=x/25 | | 5/2x–12=1/3x+1 | | 3x+(2x+10)(2x+5)(2x-15)=360 | | 21x+2=14x+3 | | 3(x+8)=2(x-7)+x | | (x+24)=(x) | | 20=-4/9u | | (x-2)(x-2)(x+1)+3(x-2)(x+1)=(x-2)P | | 2(53x)=85–2x | | -2(5-3x)=1/2(8x+10) |

Equations solver categories