3x(6x+4)=(2x-1)(3x+1)

Simple and best practice solution for 3x(6x+4)=(2x-1)(3x+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x(6x+4)=(2x-1)(3x+1) equation:



3x(6x+4)=(2x-1)(3x+1)
We move all terms to the left:
3x(6x+4)-((2x-1)(3x+1))=0
We multiply parentheses
18x^2+12x-((2x-1)(3x+1))=0
We multiply parentheses ..
18x^2-((+6x^2+2x-3x-1))+12x=0
We calculate terms in parentheses: -((+6x^2+2x-3x-1)), so:
(+6x^2+2x-3x-1)
We get rid of parentheses
6x^2+2x-3x-1
We add all the numbers together, and all the variables
6x^2-1x-1
Back to the equation:
-(6x^2-1x-1)
We add all the numbers together, and all the variables
18x^2+12x-(6x^2-1x-1)=0
We get rid of parentheses
18x^2-6x^2+12x+1x+1=0
We add all the numbers together, and all the variables
12x^2+13x+1=0
a = 12; b = 13; c = +1;
Δ = b2-4ac
Δ = 132-4·12·1
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{121}=11$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-11}{2*12}=\frac{-24}{24} =-1 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+11}{2*12}=\frac{-2}{24} =-1/12 $

See similar equations:

| x+4+x/2+3+x=12 | | x=20+0.6y | | 10x-6-5x+4=180 | | y=3-2x(-1) | | 9e+4=14-e | | ((x+2)/(x-3))=6 | | x(2x+10)=132 | | 3(2x+3)+11=-2(x-6)-18 | | 0.203=1/5+x | | 9=t-5/3 | | 2x+18=8x=12 | | m5+7=16 | | /-5t+9=24 | | -7/3=4/3u-5/7 | | 5=x+32/6 | | 8=w/4-9 | | 173-w=90 | | 3x^2=-4x+8 | | 19=a/20-8 | | 84/3x=11=15 | | 5c+5=-9 | | x=180-(12+x/2) | | 10y+4=39 | | (6t+6)+(7t-7)=90 | | 3x62-9x-30=0 | | 90=9e+5e+6 | | 9/4x-5/x+11/3=0- | | 2y=15y-36 | | y=15y-36 | | 3m=2m-18m | | x3-15x2-1500=0 | | 6^x+6^x+1=42 |

Equations solver categories