If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x(6x-4)+18=10+3(2+4x)
We move all terms to the left:
3x(6x-4)+18-(10+3(2+4x))=0
We add all the numbers together, and all the variables
3x(6x-4)-(10+3(4x+2))+18=0
We multiply parentheses
18x^2-12x-(10+3(4x+2))+18=0
We calculate terms in parentheses: -(10+3(4x+2)), so:We get rid of parentheses
10+3(4x+2)
determiningTheFunctionDomain 3(4x+2)+10
We multiply parentheses
12x+6+10
We add all the numbers together, and all the variables
12x+16
Back to the equation:
-(12x+16)
18x^2-12x-12x-16+18=0
We add all the numbers together, and all the variables
18x^2-24x+2=0
a = 18; b = -24; c = +2;
Δ = b2-4ac
Δ = -242-4·18·2
Δ = 432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{432}=\sqrt{144*3}=\sqrt{144}*\sqrt{3}=12\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-12\sqrt{3}}{2*18}=\frac{24-12\sqrt{3}}{36} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+12\sqrt{3}}{2*18}=\frac{24+12\sqrt{3}}{36} $
| 7x^2-35=413 | | 4(-8x)=5(5-5x) | | 3-2×2=15-3x | | 3x-16=(1/4)(4x-16) | | 17-5x+40=6x-70 | | 4x-15/6+x/30=x/5-1 | | 9x+27=7 | | 3k-7/2=2 | | 3k-4/4=3 | | 4/7(x+1)=1/14(x+6) | | X+0.20x=27,500 | | y^2-64y+999=0 | | F(x)=-x^2+15x | | 7v-11=12v-3 | | 28-l=33+2l | | 3x=12−9x | | 4x+11+3x=11 | | 10^x^-1=3 | | 5(3y-2)/7=4y-7 | | 10^(x-1)=3 | | 0.35x+0.10(240-x)=39 | | Y=13x-5 | | 40+(65x-55)=30-(45x-20) | | 3x-10=5x+32 | | 4x/28=1 | | (2x-4)/5-(x-1)/4=1 | | 45+14x1=11x+47+2x | | 6(202y)=5(2y-2) | | 36/a-3=0 | | 30-2x=180 | | −5=6x+3+7x | | 3/2x+2/3x=3/2-2/3 |