If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x(7x+10)=180
We move all terms to the left:
3x(7x+10)-(180)=0
We multiply parentheses
21x^2+30x-180=0
a = 21; b = 30; c = -180;
Δ = b2-4ac
Δ = 302-4·21·(-180)
Δ = 16020
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{16020}=\sqrt{36*445}=\sqrt{36}*\sqrt{445}=6\sqrt{445}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-6\sqrt{445}}{2*21}=\frac{-30-6\sqrt{445}}{42} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+6\sqrt{445}}{2*21}=\frac{-30+6\sqrt{445}}{42} $
| 4x+3=-9(3x-8) | | 8+2n-15+n=11 | | 3x-3x+9=5x-2 | | 7n–5=23 | | 6w-28=-2(w-2) | | 3b÷7=6 | | 5k+4k-2=7 | | 7x+5+x-3x=5 | | 5^2x+3=3125 | | 5+4(x-3)=x-(3-x | | 15/n=24/12815/n=24/128 | | 3(x+5=3x+5 | | 5+14=9x-5 | | 3x-2x-3=2x+9 | | 20r-19r+3r+3r+r=16 | | 3x+5x+4x=4x+8 | | 4-7(v-9)=7-6(v-10) | | 5^x=5^5 | | 2x+3x+5x-20=70+10 | | 2x+2=4096 | | 10x-20=0,x=2 | | 13x–7=3x+3 | | (6x+18)=(5x+19) | | 2x2+5x-12=0 | | 8x+27x-8=7(5x+5) | | -(-2x5)+3=-2 | | 11/2x=60 | | 3g+3g-3g-2g=8 | | -5x16=9x+x-1 | | 15/n=24/128 | | 2x+7-9x=49 | | 5-x+4=-72 |