If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x(7x-4)=(3x-4)(5x-2)
We move all terms to the left:
3x(7x-4)-((3x-4)(5x-2))=0
We multiply parentheses
21x^2-12x-((3x-4)(5x-2))=0
We multiply parentheses ..
21x^2-((+15x^2-6x-20x+8))-12x=0
We calculate terms in parentheses: -((+15x^2-6x-20x+8)), so:We add all the numbers together, and all the variables
(+15x^2-6x-20x+8)
We get rid of parentheses
15x^2-6x-20x+8
We add all the numbers together, and all the variables
15x^2-26x+8
Back to the equation:
-(15x^2-26x+8)
21x^2-12x-(15x^2-26x+8)=0
We get rid of parentheses
21x^2-15x^2-12x+26x-8=0
We add all the numbers together, and all the variables
6x^2+14x-8=0
a = 6; b = 14; c = -8;
Δ = b2-4ac
Δ = 142-4·6·(-8)
Δ = 388
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{388}=\sqrt{4*97}=\sqrt{4}*\sqrt{97}=2\sqrt{97}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{97}}{2*6}=\frac{-14-2\sqrt{97}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{97}}{2*6}=\frac{-14+2\sqrt{97}}{12} $
| 2c+5/11=1 | | -5(x+6)=x | | 2.5x=(-10) | | 6x2–8x–4=0 | | F¹(3)=(3+h)²-3/h | | x+x+2x+3x=173340 | | 3z-(z-1)=-9 | | 3g+7=7g-1 | | 30/x=14/12 | | 14/12=29.7/x | | 32x-30x=48-30 | | -3(s-9)=-15 | | 29+(x-24)+296=360 | | F(x)=3x²+2x | | 29+(x-24)+286=360 | | 12+y/8=2 | | -r2+8=0 | | 8x-1+17x+26=150 | | 2n+5n2-9=9n | | d(12-5)-4=7 | | -3y^2+4y=4 | | 2n+7=-2 | | 2x*3+2x=90 | | (6x-20)+(4x+50)=180 | | 2(8x+9)=2x+46 | | 24=1/4x+22 | | 5x*x=720 | | 86=2w+2(32) | | 3+z=-12+z | | 7x+19+9x-7=180 | | 8x*2=4x-15 | | 8x2=4x-15 |