3x(x+1)+4(x+2)=32

Simple and best practice solution for 3x(x+1)+4(x+2)=32 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x(x+1)+4(x+2)=32 equation:


Simplifying
3x(x + 1) + 4(x + 2) = 32

Reorder the terms:
3x(1 + x) + 4(x + 2) = 32
(1 * 3x + x * 3x) + 4(x + 2) = 32
(3x + 3x2) + 4(x + 2) = 32

Reorder the terms:
3x + 3x2 + 4(2 + x) = 32
3x + 3x2 + (2 * 4 + x * 4) = 32
3x + 3x2 + (8 + 4x) = 32

Reorder the terms:
8 + 3x + 4x + 3x2 = 32

Combine like terms: 3x + 4x = 7x
8 + 7x + 3x2 = 32

Solving
8 + 7x + 3x2 = 32

Solving for variable 'x'.

Reorder the terms:
8 + -32 + 7x + 3x2 = 32 + -32

Combine like terms: 8 + -32 = -24
-24 + 7x + 3x2 = 32 + -32

Combine like terms: 32 + -32 = 0
-24 + 7x + 3x2 = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-8 + 2.333333333x + x2 = 0

Move the constant term to the right:

Add '8' to each side of the equation.
-8 + 2.333333333x + 8 + x2 = 0 + 8

Reorder the terms:
-8 + 8 + 2.333333333x + x2 = 0 + 8

Combine like terms: -8 + 8 = 0
0 + 2.333333333x + x2 = 0 + 8
2.333333333x + x2 = 0 + 8

Combine like terms: 0 + 8 = 8
2.333333333x + x2 = 8

The x term is 2.333333333x.  Take half its coefficient (1.166666667).
Square it (1.361111112) and add it to both sides.

Add '1.361111112' to each side of the equation.
2.333333333x + 1.361111112 + x2 = 8 + 1.361111112

Reorder the terms:
1.361111112 + 2.333333333x + x2 = 8 + 1.361111112

Combine like terms: 8 + 1.361111112 = 9.361111112
1.361111112 + 2.333333333x + x2 = 9.361111112

Factor a perfect square on the left side:
(x + 1.166666667)(x + 1.166666667) = 9.361111112

Calculate the square root of the right side: 3.059593292

Break this problem into two subproblems by setting 
(x + 1.166666667) equal to 3.059593292 and -3.059593292.

Subproblem 1

x + 1.166666667 = 3.059593292 Simplifying x + 1.166666667 = 3.059593292 Reorder the terms: 1.166666667 + x = 3.059593292 Solving 1.166666667 + x = 3.059593292 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.166666667' to each side of the equation. 1.166666667 + -1.166666667 + x = 3.059593292 + -1.166666667 Combine like terms: 1.166666667 + -1.166666667 = 0.000000000 0.000000000 + x = 3.059593292 + -1.166666667 x = 3.059593292 + -1.166666667 Combine like terms: 3.059593292 + -1.166666667 = 1.892926625 x = 1.892926625 Simplifying x = 1.892926625

Subproblem 2

x + 1.166666667 = -3.059593292 Simplifying x + 1.166666667 = -3.059593292 Reorder the terms: 1.166666667 + x = -3.059593292 Solving 1.166666667 + x = -3.059593292 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.166666667' to each side of the equation. 1.166666667 + -1.166666667 + x = -3.059593292 + -1.166666667 Combine like terms: 1.166666667 + -1.166666667 = 0.000000000 0.000000000 + x = -3.059593292 + -1.166666667 x = -3.059593292 + -1.166666667 Combine like terms: -3.059593292 + -1.166666667 = -4.226259959 x = -4.226259959 Simplifying x = -4.226259959

Solution

The solution to the problem is based on the solutions from the subproblems. x = {1.892926625, -4.226259959}

See similar equations:

| 4+14s-2=8s+74-6s | | (8x-23)=(2x+37) | | 5x-17/4=-8 | | x^2+29x-525=0 | | -5(v+2)+2v+5=6v+6 | | -3/7x=9 | | (8x-23)=(2x+31) | | 7/12y-49 | | 4x-12=3x | | 3/4x+6=x+5 | | 6x-12+4x-22=4 | | 2(3x+5)=2x-11 | | -5(2x+1)=25 | | -5(v+3)+2v+5=8v+11 | | (6x-22)=(x+31) | | 70x=280 | | 8x+9-5x+7=40 | | 4(x^2-1)=4x-1 | | 7x+4-2x+1=0 | | -8(v+4)+3v+5=6v+9 | | 49+0.13x=40+0.15x | | 7x+4c=33 | | .5x+8=2(x-8) | | 49+0.13x= | | 4+3x=40x | | .76x+.52(80)=.32(168) | | 36x^4/42x^7 | | 14=w/7 | | 2(x+3)=3x-x+8 | | x^3+3x+24=0 | | 5x+7y=356 | | 10000Q-2000Q=4000 |

Equations solver categories