3x(x+1)=(3x+4)

Simple and best practice solution for 3x(x+1)=(3x+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x(x+1)=(3x+4) equation:



3x(x+1)=(3x+4)
We move all terms to the left:
3x(x+1)-((3x+4))=0
We multiply parentheses
3x^2+3x-((3x+4))=0
We calculate terms in parentheses: -((3x+4)), so:
(3x+4)
We get rid of parentheses
3x+4
Back to the equation:
-(3x+4)
We get rid of parentheses
3x^2+3x-3x-4=0
We add all the numbers together, and all the variables
3x^2-4=0
a = 3; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·3·(-4)
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{3}}{2*3}=\frac{0-4\sqrt{3}}{6} =-\frac{4\sqrt{3}}{6} =-\frac{2\sqrt{3}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{3}}{2*3}=\frac{0+4\sqrt{3}}{6} =\frac{4\sqrt{3}}{6} =\frac{2\sqrt{3}}{3} $

See similar equations:

| 10x=x-1 | | (7x+5=9x+3) | | 420 ÷d=30;d= | | –11.42+11.1y+4.93=12.2y+11.77 | | 111=101x-(-10) | | -32=-14+m | | 3(2-x)=5(2×-7)+2 | | |10-3/4x|=16 | | v-63=-88 | | 2(x−3)+21=-3 | | x=19+5x3 | | 2z-20+3z=10 | | 4(-8a-6)=-154 | | 8-3(k+2)=23k | | 4(2-x)+15=3(x+5 | | 5(x+2+9)=59 | | 5x+15=3(2x+4) | | 5/2x-8+3/4x=(7/4x+3/2x+6) | | 3+5x-13=16 | | 4(2-x)+15=3(x+50 | | x/6=-150 | | 1/3(x-5/6=-43/18 | | 27=3x-1= | | 3(x-1)=2-3+3 | | 4(–10b−1)+b=–8(5b+1) | | 2x−−√+8=32 | | 3h-2(4h-5)=-7h+10 | | 555=n+905 | | 3(2x-7)=93(2x−7)=9 | | 1.7(h+3)=8.5 | | -3+12-9x+8=-3(4x-7 | | –p=15−2p |

Equations solver categories