If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x(x+16)=180
We move all terms to the left:
3x(x+16)-(180)=0
We multiply parentheses
3x^2+48x-180=0
a = 3; b = 48; c = -180;
Δ = b2-4ac
Δ = 482-4·3·(-180)
Δ = 4464
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4464}=\sqrt{144*31}=\sqrt{144}*\sqrt{31}=12\sqrt{31}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-12\sqrt{31}}{2*3}=\frac{-48-12\sqrt{31}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+12\sqrt{31}}{2*3}=\frac{-48+12\sqrt{31}}{6} $
| 16-5(3t-4t)=8(-2t+11) | | 16-2t=3/2•t+9 | | 2x^2+5x+8=-12 | | 5(x-3)-2x=60 | | $9.95+$3.25c=$39.20 | | 5(x3)-2x=60 | | 13p-3p=-5(3+2p) | | 4(3-y)=15-4y-3 | | 13p-3p=-5(3+2p | | 3s+4s=35 | | 3s-4s=35 | | 3s+4s=42 | | (2w+5)(2w+7)+28=0 | | 35=-7/6v | | -12x2-20x+48=0 | | -6y-1=5y | | 7h=77 | | -3v/2=-21 | | W(w+5)+28=(w+2)(w+5) | | 11z+5z-14z=6 | | W(w+5)+(w+2)(w+5)=28 | | 5s-4s+2s-2s+2s=12 | | k+5k-6k+3k=6 | | -4x-(9-3x)=8x-1 | | 15k-13k+2k=4 | | 3.3x+12=-54 | | -5/11h+7/9=2/8 | | Y=-2x-6+5 | | 2.3x-4.1=12 | | 6x=3x=180 | | -8z+12=-13 | | 7s+2s=18 |