3x(x+2)+(x-1)=x+1

Simple and best practice solution for 3x(x+2)+(x-1)=x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x(x+2)+(x-1)=x+1 equation:


Simplifying
3x(x + 2) + (x + -1) = x + 1

Reorder the terms:
3x(2 + x) + (x + -1) = x + 1
(2 * 3x + x * 3x) + (x + -1) = x + 1
(6x + 3x2) + (x + -1) = x + 1

Reorder the terms:
6x + 3x2 + (-1 + x) = x + 1

Remove parenthesis around (-1 + x)
6x + 3x2 + -1 + x = x + 1

Reorder the terms:
-1 + 6x + x + 3x2 = x + 1

Combine like terms: 6x + x = 7x
-1 + 7x + 3x2 = x + 1

Reorder the terms:
-1 + 7x + 3x2 = 1 + x

Solving
-1 + 7x + 3x2 = 1 + x

Solving for variable 'x'.

Reorder the terms:
-1 + -1 + 7x + -1x + 3x2 = 1 + x + -1 + -1x

Combine like terms: -1 + -1 = -2
-2 + 7x + -1x + 3x2 = 1 + x + -1 + -1x

Combine like terms: 7x + -1x = 6x
-2 + 6x + 3x2 = 1 + x + -1 + -1x

Reorder the terms:
-2 + 6x + 3x2 = 1 + -1 + x + -1x

Combine like terms: 1 + -1 = 0
-2 + 6x + 3x2 = 0 + x + -1x
-2 + 6x + 3x2 = x + -1x

Combine like terms: x + -1x = 0
-2 + 6x + 3x2 = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-0.6666666667 + 2x + x2 = 0

Move the constant term to the right:

Add '0.6666666667' to each side of the equation.
-0.6666666667 + 2x + 0.6666666667 + x2 = 0 + 0.6666666667

Reorder the terms:
-0.6666666667 + 0.6666666667 + 2x + x2 = 0 + 0.6666666667

Combine like terms: -0.6666666667 + 0.6666666667 = 0.0000000000
0.0000000000 + 2x + x2 = 0 + 0.6666666667
2x + x2 = 0 + 0.6666666667

Combine like terms: 0 + 0.6666666667 = 0.6666666667
2x + x2 = 0.6666666667

The x term is 2x.  Take half its coefficient (1).
Square it (1) and add it to both sides.

Add '1' to each side of the equation.
2x + 1 + x2 = 0.6666666667 + 1

Reorder the terms:
1 + 2x + x2 = 0.6666666667 + 1

Combine like terms: 0.6666666667 + 1 = 1.6666666667
1 + 2x + x2 = 1.6666666667

Factor a perfect square on the left side:
(x + 1)(x + 1) = 1.6666666667

Calculate the square root of the right side: 1.290994449

Break this problem into two subproblems by setting 
(x + 1) equal to 1.290994449 and -1.290994449.

Subproblem 1

x + 1 = 1.290994449 Simplifying x + 1 = 1.290994449 Reorder the terms: 1 + x = 1.290994449 Solving 1 + x = 1.290994449 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + x = 1.290994449 + -1 Combine like terms: 1 + -1 = 0 0 + x = 1.290994449 + -1 x = 1.290994449 + -1 Combine like terms: 1.290994449 + -1 = 0.290994449 x = 0.290994449 Simplifying x = 0.290994449

Subproblem 2

x + 1 = -1.290994449 Simplifying x + 1 = -1.290994449 Reorder the terms: 1 + x = -1.290994449 Solving 1 + x = -1.290994449 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + x = -1.290994449 + -1 Combine like terms: 1 + -1 = 0 0 + x = -1.290994449 + -1 x = -1.290994449 + -1 Combine like terms: -1.290994449 + -1 = -2.290994449 x = -2.290994449 Simplifying x = -2.290994449

Solution

The solution to the problem is based on the solutions from the subproblems. x = {0.290994449, -2.290994449}

See similar equations:

| 2(x^2+16)=40 | | 100x+23.11=9 | | 2.5x=(5x-3)+1x | | 8x^2+14x+13=0 | | 3x-4+5x=4(2x+2) | | 4[8-5x]+2x=40 | | 5x^2+x^2=6 | | x+2(5x-3)=x(7-x) | | 125x=3304 | | 7x+9x-8x-5=35 | | 21=ab^1 | | 4x+3y=3x+2y | | 10x+3=3(3x-2)+9 | | x+1+x/x+1 | | x+x+5x+25x=2x-60 | | 2x^2+8=16 | | (7x+4)/12=11 | | x=4y^2-8 | | 4x+3y=3x+4y | | 100x-99=101 | | 2x+-5=4y+25 | | 3x+6x+12=12 | | 7a+1+a+1-10a= | | 6*170+x=1900 | | (x-30)+(4x-310)+1/2x+14=180 | | 27n-60=-3x | | 9(2x+1)=3x-9x | | ax+b=cfinda | | 11(8-y)+3=-3(y-3)-4 | | 125x-250=0 | | 81x^3=64x^2 | | 11(8-y)+3=3(y-3)-4 |

Equations solver categories