If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x(x+2)=(x+1)(x-5)
We move all terms to the left:
3x(x+2)-((x+1)(x-5))=0
We multiply parentheses
3x^2+6x-((x+1)(x-5))=0
We multiply parentheses ..
3x^2-((+x^2-5x+x-5))+6x=0
We calculate terms in parentheses: -((+x^2-5x+x-5)), so:We add all the numbers together, and all the variables
(+x^2-5x+x-5)
We get rid of parentheses
x^2-5x+x-5
We add all the numbers together, and all the variables
x^2-4x-5
Back to the equation:
-(x^2-4x-5)
3x^2+6x-(x^2-4x-5)=0
We get rid of parentheses
3x^2-x^2+6x+4x+5=0
We add all the numbers together, and all the variables
2x^2+10x+5=0
a = 2; b = 10; c = +5;
Δ = b2-4ac
Δ = 102-4·2·5
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{15}}{2*2}=\frac{-10-2\sqrt{15}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{15}}{2*2}=\frac{-10+2\sqrt{15}}{4} $
| 7x+24=3x+9 | | -6(z-1)=12 | | 5x+9/6=4 | | 3x-4=6x/2 | | 7x+-5=3x+4 | | -3(x-4)+6x=2x-2 | | 2k+8÷4k=3 | | -3(3+k=2(3+6k)-10k | | -12x-8x=-4-11x-8x | | 36-(3c+)=2(c+3)+6 | | 40=3x+22 | | 23+4a=2a+7 | | 23+4a=2a+6 | | -3/8m=15 | | 4x+6(4x+5)=2x-30 | | (1/3s)+14=26 | | -3-4v=-15-3v | | X=3-2=y | | -7a-1=17-9a | | -6(x-5)=66 | | 12x4=78 | | -3-n=-5n+1 | | 22x+4=15x+5+120 | | 0=7x+11 | | -3(6-3x)=-63 | | -11x+5x=2x+16 | | 2b=2b+9 | | 0=80(0.4^t | | 2x^2-13x+4=0 | | 9v-5+3-12=1+12v | | -4(2v-3)+7v=5(v+3) | | 3a+2+4a=2 |