If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x(x+2)=180
We move all terms to the left:
3x(x+2)-(180)=0
We multiply parentheses
3x^2+6x-180=0
a = 3; b = 6; c = -180;
Δ = b2-4ac
Δ = 62-4·3·(-180)
Δ = 2196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2196}=\sqrt{36*61}=\sqrt{36}*\sqrt{61}=6\sqrt{61}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{61}}{2*3}=\frac{-6-6\sqrt{61}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{61}}{2*3}=\frac{-6+6\sqrt{61}}{6} $
| 54=-6b | | -6=3(-5+e) | | 1/47/2=n | | m/2=2/3 | | 5x-2x+8=x+6 | | (36-16x)=4(4+2x) | | |x−50|=15, | | 2-4(3x+6)=4(2x+3)+46 | | 2x+4=8-1 | | 6s-12=24 | | -7=3x+517 | | -8(n+5)=-88+8n | | –18=2r | | -13y+9=18-16y | | 6x−4=3x+5 | | 1/4x7/2= | | 4(x-2)+8=32 | | (x+10)=128 | | 4(n-2)=5n-n+9 | | (30-2x)(18-2x)=160 | | 12x=30+15-21+0 | | 3x+.4=7x-8 | | 2(x-6)+2x=22 | | 3x-1=7+1 | | 2x+7+75=180 | | 0.5(8x-12)=1/3(6x+6) | | -17g=20-18g | | -34=6m- | | 11/3x-1/6=11/2x+8 | | 3x-1=-(x-9) | | 11/13=y/4 | | (4x+60)=(12x-20) |