If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x(x+24)=180
We move all terms to the left:
3x(x+24)-(180)=0
We multiply parentheses
3x^2+72x-180=0
a = 3; b = 72; c = -180;
Δ = b2-4ac
Δ = 722-4·3·(-180)
Δ = 7344
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7344}=\sqrt{144*51}=\sqrt{144}*\sqrt{51}=12\sqrt{51}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(72)-12\sqrt{51}}{2*3}=\frac{-72-12\sqrt{51}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(72)+12\sqrt{51}}{2*3}=\frac{-72+12\sqrt{51}}{6} $
| r=92-4 | | 0.01=10^x/4 | | 11m-8-6m=22 | | 8x+13=-6x-18 | | 3(-2x+4)=6x+4 | | 3^x-2-10=15 | | z=9(9) | | 25y+y^2-100=0 | | 2b−5=7 | | n/3+12=13 | | k-2=46 | | 4x4=3 | | 19x+67=100 | | 9-18+2=8x-2 | | 4x-16+8=4x-7 | | 49.62=x-0.15x | | 9-54+45=9x-9 | | Y+2y-3=6 | | ½+x=4/7 | | 3x+27=6x+42 | | -17+b/8=-13 | | 9−2c=1 | | c/42=320 | | 6x+29+2x−9=180 | | -10-45=2x-8-19 | | 25^4x-3=(1/125)^x+1 | | 0.16-3.6=11+2x | | 2=2n−8 | | d/8-4=-7 | | h/6-5=-8 | | X^2+2x+625=0 | | 7c+8=2(5c-4) |