3x(x+4)=2(x-1)

Simple and best practice solution for 3x(x+4)=2(x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x(x+4)=2(x-1) equation:



3x(x+4)=2(x-1)
We move all terms to the left:
3x(x+4)-(2(x-1))=0
We multiply parentheses
3x^2+12x-(2(x-1))=0
We calculate terms in parentheses: -(2(x-1)), so:
2(x-1)
We multiply parentheses
2x-2
Back to the equation:
-(2x-2)
We get rid of parentheses
3x^2+12x-2x+2=0
We add all the numbers together, and all the variables
3x^2+10x+2=0
a = 3; b = 10; c = +2;
Δ = b2-4ac
Δ = 102-4·3·2
Δ = 76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{76}=\sqrt{4*19}=\sqrt{4}*\sqrt{19}=2\sqrt{19}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{19}}{2*3}=\frac{-10-2\sqrt{19}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{19}}{2*3}=\frac{-10+2\sqrt{19}}{6} $

See similar equations:

| 0=x/6-7 | | /x-45=-41 | | 3(x+4(=2(x-1) | | 4/8=x/4 | | 6f−-17=65 | | 4+-8b=-52 | | 0.26n=1,95 | | 10-9g=-7g-4 | | 3=5m+3 | | 20=2m+m+8 | | 14g-10=4 | | 4x+15)=(33-2x) | | 60=12x-2 | | -4z=z-10 | | 670=2x5 | | 2+1/6x=-4= | | -3.5x=x/4 | | -1+4+-3-1=x | | -10-7k=-5k+10 | | 5x-3.3=7.2= | | 2(4x-3)=2*13 | | 6(k-85)=66 | | -v=8+3v | | 16x=4x-8 | | 4k^2-192k+1132=0 | | 26=8.2w-15 | | 19=4x+3= | | 4x–7=-15 | | -5b=-7-6b | | 12x+10=150 | | 1-8a=13-10a | | -2=(k-11) |

Equations solver categories