If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x(x+48)=180
We move all terms to the left:
3x(x+48)-(180)=0
We multiply parentheses
3x^2+144x-180=0
a = 3; b = 144; c = -180;
Δ = b2-4ac
Δ = 1442-4·3·(-180)
Δ = 22896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{22896}=\sqrt{144*159}=\sqrt{144}*\sqrt{159}=12\sqrt{159}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(144)-12\sqrt{159}}{2*3}=\frac{-144-12\sqrt{159}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(144)+12\sqrt{159}}{2*3}=\frac{-144+12\sqrt{159}}{6} $
| -2x+2(7x-10)=124 | | -52+6x=32 | | 9j-4.5=9j-4.5 | | 7(x+4)+3=31 | | 9+3b+2(b-1)=68 | | 5(2x-1)=2(5x-1) | | 5(2x-1)=2(5x-1 | | 14(20.5-2.5y)+8y=98 | | 6(r+9)=90 | | -7(f-78)=-56 | | 8(q+22)=-48 | | 1+35=-4(9x-9) | | -6(b+63)=30 | | -3(w-53)=-60 | | -18+22=-4(x+1) | | -7(p-86)=-43 | | 3x+41=56 | | 6(n-79)=72 | | 10(k-89)=100 | | -9-5x=-14 | | 14+22=-4(6x-9) | | -18=-2(g-11) | | -5x+41=36 | | (6x+3)^2=46 | | 6n+5+4n-5=180 | | -19+8x=-75 | | -3(m+4)=-15 | | 2(z-12)=4 | | -2(p+-2)=-10 | | -7x^2/3=0 | | -3(p-20)=12 | | 4(w-13)=16 |