3x(x-1)+8(x-3)=6x+7-5x

Simple and best practice solution for 3x(x-1)+8(x-3)=6x+7-5x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x(x-1)+8(x-3)=6x+7-5x equation:



3x(x-1)+8(x-3)=6x+7-5x
We move all terms to the left:
3x(x-1)+8(x-3)-(6x+7-5x)=0
We add all the numbers together, and all the variables
3x(x-1)+8(x-3)-(x+7)=0
We multiply parentheses
3x^2-3x+8x-(x+7)-24=0
We get rid of parentheses
3x^2-3x+8x-x-7-24=0
We add all the numbers together, and all the variables
3x^2+4x-31=0
a = 3; b = 4; c = -31;
Δ = b2-4ac
Δ = 42-4·3·(-31)
Δ = 388
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{388}=\sqrt{4*97}=\sqrt{4}*\sqrt{97}=2\sqrt{97}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{97}}{2*3}=\frac{-4-2\sqrt{97}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{97}}{2*3}=\frac{-4+2\sqrt{97}}{6} $

See similar equations:

| 3(5r-5)=6(-3{3r) | | ((2z-3)/5)-((z-6)/4)=3 | | x+3/2=5/2 | | m+-6+-2m=78 | | -6n+6(-7-8n)=2+5(-4n-2) | | 25(1-x)=-8-9 | | -p+13=-p+2 | | 66=1/3×3.14×25×h | | -x^2-11x=10 | | -2x(x+1)=30 | | 76=-4+4x | | -5+10e=5 | | 2z-4=7(z-2) | | -3(8x+11)=6( | | -3w-1=4 | | -12-9r=-18-9r+6 | | -2x^2=-6x-140 | | 3x+2=13x-28 | | 6(-6p+5)=-4-2p | | 9=11+y | | 6h-8=7h-3 | | 30=-x^2-13x | | -3(4x+3+4(6x+1)=43 | | -6-9b=-9b-1 | | 3w+10=22 | | 2(x−2)=5x−3−3x | | -7n-4=8-9n | | 2x^2=16x+18 | | 2a-38=104 | | -3+9=9u-3 | | X+0.04x=41,080 | | 4p+4+1=-23 |

Equations solver categories