3x(x-1)-2(2x+1)=8(x-1)

Simple and best practice solution for 3x(x-1)-2(2x+1)=8(x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x(x-1)-2(2x+1)=8(x-1) equation:



3x(x-1)-2(2x+1)=8(x-1)
We move all terms to the left:
3x(x-1)-2(2x+1)-(8(x-1))=0
We multiply parentheses
3x^2-3x-4x-(8(x-1))-2=0
We calculate terms in parentheses: -(8(x-1)), so:
8(x-1)
We multiply parentheses
8x-8
Back to the equation:
-(8x-8)
We add all the numbers together, and all the variables
3x^2-7x-(8x-8)-2=0
We get rid of parentheses
3x^2-7x-8x+8-2=0
We add all the numbers together, and all the variables
3x^2-15x+6=0
a = 3; b = -15; c = +6;
Δ = b2-4ac
Δ = -152-4·3·6
Δ = 153
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{153}=\sqrt{9*17}=\sqrt{9}*\sqrt{17}=3\sqrt{17}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-3\sqrt{17}}{2*3}=\frac{15-3\sqrt{17}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+3\sqrt{17}}{2*3}=\frac{15+3\sqrt{17}}{6} $

See similar equations:

| 282.7=3.14(10)r^2 | | 7x-3=100 | | 2+2x+40+6x=106 | | 125=x75 | | 9x—24=6x | | 9x–24=6x | | 2(x+5)=5x+2 | | 179=1/x-1 | | 24-5x=64. | | f. 4( | | 119=1/x | | (9x+18=2x+19) | | 0.25x+4x=12 | | Y=-4x+100x | | 1/y=-13 | | 11v=748 | | 3-x+2=44 | | 28m=392 | | 3x+3+2=44 | | 2x+10=x² | | X+3-x+2+x=44 | | -49=7m | | 3x+17(x-3)=4(4x-9)+12 | | 3(x-1)=1-x | | 0.50=0.576+(-9.52x10^-3) | | 2+7z=-z-4 | | 2b+150=86 | | 5x-80=2x+10 | | 30=9+7t | | 2b+251=63 | | -13z=-52 | | 7=s+12 |

Equations solver categories