3x(x-1)=2(x2+27)

Simple and best practice solution for 3x(x-1)=2(x2+27) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x(x-1)=2(x2+27) equation:



3x(x-1)=2(x2+27)
We move all terms to the left:
3x(x-1)-(2(x2+27))=0
We add all the numbers together, and all the variables
-(2(+x^2+27))+3x(x-1)=0
We multiply parentheses
-(2(+x^2+27))+3x^2-3x=0
We calculate terms in parentheses: -(2(+x^2+27)), so:
2(+x^2+27)
We multiply parentheses
2x^2+54
Back to the equation:
-(2x^2+54)
We add all the numbers together, and all the variables
3x^2-3x-(2x^2+54)=0
We get rid of parentheses
3x^2-2x^2-3x-54=0
We add all the numbers together, and all the variables
x^2-3x-54=0
a = 1; b = -3; c = -54;
Δ = b2-4ac
Δ = -32-4·1·(-54)
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{225}=15$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-15}{2*1}=\frac{-12}{2} =-6 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+15}{2*1}=\frac{18}{2} =9 $

See similar equations:

| 6(3v+10)+6v=0 | | N+2=1/3(3n+6) | | X-3y=97 | | 3z-2/6=5z | | 6x-5-6/x=0 | | 6(3q-5)+2q=0 | | 6(3q-5)=0 | | 1/4x+5/2x=55/24 | | X×y-3=18 | | 2x+3x=5=x+4x=10 | | -2(x+7)=13 | | 2x+3x=5;x+4x=10 | | (2y-9)(3y+1)=(6y+4)(y-2) | | 6-2-9-2-4=x | | 6a+20=a+60 | | 5+-5a=5+a | | 1/2/8=x/36 | | (225-5x)^1/2=0 | | -3m/(-3)=9/(-3) | | 2x2-5x+3=0 | | 6b+27=4b-3 | | -28-3m=-20 | | 2x2-10x+12=0 | | 3y+10=115 | | 3x+7-5x=18 | | -5(1-5x)+5(-8x-2)=-4x–8x | | -3a=-4/5 | | 7x+1-2x=4-2x | | 8xx/2=32 | | -3x+5+5=0 | | k^2-146k-256=0 | | 3+5x-4-7x=7x-2 |

Equations solver categories