3x(x-2)+11=2(x+5)

Simple and best practice solution for 3x(x-2)+11=2(x+5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x(x-2)+11=2(x+5) equation:



3x(x-2)+11=2(x+5)
We move all terms to the left:
3x(x-2)+11-(2(x+5))=0
We multiply parentheses
3x^2-6x-(2(x+5))+11=0
We calculate terms in parentheses: -(2(x+5)), so:
2(x+5)
We multiply parentheses
2x+10
Back to the equation:
-(2x+10)
We get rid of parentheses
3x^2-6x-2x-10+11=0
We add all the numbers together, and all the variables
3x^2-8x+1=0
a = 3; b = -8; c = +1;
Δ = b2-4ac
Δ = -82-4·3·1
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{13}}{2*3}=\frac{8-2\sqrt{13}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{13}}{2*3}=\frac{8+2\sqrt{13}}{6} $

See similar equations:

| 5=y-7y | | y/5+2/5=y/7-2/5= | | 3c=-14 | | 20÷3=6r2 | | -7.33-1.3n=-0.18 | | 2(z-30)=68 | | y/5+2/5=y/7-2/5 | | 8=n/8+10 | | 91=7(t+4) | | -2-5x=-92 | | m/7-54=-47 | | d/5-45=-39 | | 4x-10+3x-1+58=180 | | 8m+4=5m+6 | | Y/6+y/2=10/9 | | 12+9h=30 | | h/8+71=75 | | 86×+y=500 | | -4=-3+x/8 | | 11x/9+9=-10 | | x/5.7=2.3 | | p+6.2=14.6 | | -5m-8=12 | | 6(x-3)=4x+4 | | 19+6p=43 | | 8(x-4)-7=-(x-3) | | 4(r+13)=80 | | 3z-1=58 | | 18+6c=36 | | r/49=-7 | | x=25-100/12+1/6x | | h+32/8=8 |

Equations solver categories