3x(x-3)=(2x-4)(x-3)

Simple and best practice solution for 3x(x-3)=(2x-4)(x-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x(x-3)=(2x-4)(x-3) equation:



3x(x-3)=(2x-4)(x-3)
We move all terms to the left:
3x(x-3)-((2x-4)(x-3))=0
We multiply parentheses
3x^2-9x-((2x-4)(x-3))=0
We multiply parentheses ..
3x^2-((+2x^2-6x-4x+12))-9x=0
We calculate terms in parentheses: -((+2x^2-6x-4x+12)), so:
(+2x^2-6x-4x+12)
We get rid of parentheses
2x^2-6x-4x+12
We add all the numbers together, and all the variables
2x^2-10x+12
Back to the equation:
-(2x^2-10x+12)
We add all the numbers together, and all the variables
3x^2-9x-(2x^2-10x+12)=0
We get rid of parentheses
3x^2-2x^2-9x+10x-12=0
We add all the numbers together, and all the variables
x^2+x-12=0
a = 1; b = 1; c = -12;
Δ = b2-4ac
Δ = 12-4·1·(-12)
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{49}=7$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-7}{2*1}=\frac{-8}{2} =-4 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+7}{2*1}=\frac{6}{2} =3 $

See similar equations:

| (x+5/2)+1/2=2x-(x-3/8) | | k/3=2.7 | | 2x+3+3x=-4 | | 2/5/4=2/x | | 14(8c-6)=5c-5 | | 16j-15j=20 | | 5y+(3y+9)=12 | | (-2w^2)-12w-9=0 | | 12k-9k=18 | | x+30+4x+x+20=180 | | 19+4x+13x=70 | | 31=4(-)9y | | 5y+(5y+9)=12 | | 5x/6-x-6/9=2/3 | | 2x+20=65 | | 2(3u+7)=-4(3-2 | | -1+7x=-50 | | x/12-7=24 | | p+6=-3 | | 2(x-7)^2+4=246 | | F(x)=9x+1;x=0 | | -1/2x+3=x–7 | | 2(x-7)2+4=246 | | -6(-3v+1)=5(-2v-2) | | 2x+50=65 | | -7x+2=24+9x | | 6x-2+20=180 | | 6x-2+20=20 | | 5(x-8)x6=-7 | | 4(3-y)-(6y+9)=-12y | | |x-5|+7=9 | | -2.3x-1.2=9.66 |

Equations solver categories