3x(x-4)+15=2(x+3)

Simple and best practice solution for 3x(x-4)+15=2(x+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x(x-4)+15=2(x+3) equation:



3x(x-4)+15=2(x+3)
We move all terms to the left:
3x(x-4)+15-(2(x+3))=0
We multiply parentheses
3x^2-12x-(2(x+3))+15=0
We calculate terms in parentheses: -(2(x+3)), so:
2(x+3)
We multiply parentheses
2x+6
Back to the equation:
-(2x+6)
We get rid of parentheses
3x^2-12x-2x-6+15=0
We add all the numbers together, and all the variables
3x^2-14x+9=0
a = 3; b = -14; c = +9;
Δ = b2-4ac
Δ = -142-4·3·9
Δ = 88
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{88}=\sqrt{4*22}=\sqrt{4}*\sqrt{22}=2\sqrt{22}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{22}}{2*3}=\frac{14-2\sqrt{22}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{22}}{2*3}=\frac{14+2\sqrt{22}}{6} $

See similar equations:

| -8-6m-m=9m-8 | | -(4+x)=3x | | 4t+9=19 | | 3((-4y-4)/5)+4y=12 | | n/3+5=9 | | X/3=7+x | | 2n^2+6=300 | | 16=2t/3-4 | | -15.6=-1.3x+7.8 | | 3(3b+2)=24 | | 6(2x-3)+3x=72 | | 6x-(2x-5)=41 | | m^2=-17m-72 | | 5887+139.75x=350x | | x*2^-2=0.375 | | 0.006x-10111/x^2=0 | | -3/4+x=-27 | | 4+7l=3l | | 1340=x-26800 | | x(16-16)=6 | | x-26800=1340 | | 6(x-2)+5x=-23 | | x(16-16)=0 | | 7(w+3)=-2(6w-8)+9w | | 9z+2z=22 | | 8=q/2-32 | | 71=3c+17 | | 4x-7-x+12=-7 | | 50x=88 | | 24x=3x^2+48 | | 2x-4+2(7x+1)=-2(x+4) | | 2x-4+2(7x+1)=-2(x+4 |

Equations solver categories