3x(x-4)-7=2(x-3)

Simple and best practice solution for 3x(x-4)-7=2(x-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x(x-4)-7=2(x-3) equation:



3x(x-4)-7=2(x-3)
We move all terms to the left:
3x(x-4)-7-(2(x-3))=0
We multiply parentheses
3x^2-12x-(2(x-3))-7=0
We calculate terms in parentheses: -(2(x-3)), so:
2(x-3)
We multiply parentheses
2x-6
Back to the equation:
-(2x-6)
We get rid of parentheses
3x^2-12x-2x+6-7=0
We add all the numbers together, and all the variables
3x^2-14x-1=0
a = 3; b = -14; c = -1;
Δ = b2-4ac
Δ = -142-4·3·(-1)
Δ = 208
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{208}=\sqrt{16*13}=\sqrt{16}*\sqrt{13}=4\sqrt{13}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-4\sqrt{13}}{2*3}=\frac{14-4\sqrt{13}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+4\sqrt{13}}{2*3}=\frac{14+4\sqrt{13}}{6} $

See similar equations:

| x+33=x^2+10 | | 6x-8=4x+13= | | 100-1/3=4p-120 | | w=-2.4*20+62 | | X+2x+6x=30 | | -100t=10t-5t | | (2x-1)(x+2)=666 | | Y4+5y-3=0 | | 7x+3x+25=35 | | 16h^2=20 | | 5(3x-2)+4(2x+1)=2(4x-1) | | 4(w-7)=11 | | 5h+8=39 | | X/2=2/5y | | 3f(1)=15 | | 4x^+4=20 | | 6z+3=2-3z | | 2x+12=12+2x | | t^2-26t-9=0 | | -8x^2+48x-32=0 | | t^2-26-9=0 | | 0.4x-x=168 | | 50*48+25y=2400 | | 21y+7=-21 | | 13x-25=9x-30 | | -4x+32=-6(4x+3x) | | 2^b=0.25 | | 5z+24=9 | | 2(31x-3)=2.2x+6 | | 7(3x+7)=289 | | 4m-5=5m+2 | | -6+z=0 |

Equations solver categories