If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x(x-4)=24(x+15)=79
We move all terms to the left:
3x(x-4)-(24(x+15))=0
We multiply parentheses
3x^2-12x-(24(x+15))=0
We calculate terms in parentheses: -(24(x+15)), so:We get rid of parentheses
24(x+15)
We multiply parentheses
24x+360
Back to the equation:
-(24x+360)
3x^2-12x-24x-360=0
We add all the numbers together, and all the variables
3x^2-36x-360=0
a = 3; b = -36; c = -360;
Δ = b2-4ac
Δ = -362-4·3·(-360)
Δ = 5616
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5616}=\sqrt{144*39}=\sqrt{144}*\sqrt{39}=12\sqrt{39}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-12\sqrt{39}}{2*3}=\frac{36-12\sqrt{39}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+12\sqrt{39}}{2*3}=\frac{36+12\sqrt{39}}{6} $
| x-17=277-2x | | 10k-37=3k+33 | | 12=0.24•x | | g(×)=(×^2+1)(×^3-1) | | 4x+8|5=4 | | 90+57+(4x+1)=180 | | -9(3-6d)=9(2d-2) | | )5.x+12=62 | | 65=¾c-7 | | (3x-8)=(x+26) | | q+52=58 | | 34(x-3)=4 | | 5(2×-3)=3(2x) | | -7x=-19x | | (9x-2)=133 | | 8-(n-+5)=96 | | )4.x+20=100 | | (4x)+(x+18)+122=180 | | -20-7q=20-5q | | 7(1+2r=119 | | 1/6(x+5)+3x=1/5x+2 | | -15x^2(x+25x(x+4=0 | | 7+2x3=13 | | 7x+6=x-42 | | 2x+1+16+5x+4=180 | | 15-{a}{12}=22 | | 126x=3 | | 1x+1+16+5x+4=180 | | n-5=40 | | y2-125=100 | | 483=3x | | 9.5(3x-1/2)=-118.75 |