3x(x-5)+7x=5(3-x)

Simple and best practice solution for 3x(x-5)+7x=5(3-x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x(x-5)+7x=5(3-x) equation:



3x(x-5)+7x=5(3-x)
We move all terms to the left:
3x(x-5)+7x-(5(3-x))=0
We add all the numbers together, and all the variables
3x(x-5)+7x-(5(-1x+3))=0
We add all the numbers together, and all the variables
7x+3x(x-5)-(5(-1x+3))=0
We multiply parentheses
3x^2+7x-15x-(5(-1x+3))=0
We calculate terms in parentheses: -(5(-1x+3)), so:
5(-1x+3)
We multiply parentheses
-5x+15
Back to the equation:
-(-5x+15)
We add all the numbers together, and all the variables
3x^2-8x-(-5x+15)=0
We get rid of parentheses
3x^2-8x+5x-15=0
We add all the numbers together, and all the variables
3x^2-3x-15=0
a = 3; b = -3; c = -15;
Δ = b2-4ac
Δ = -32-4·3·(-15)
Δ = 189
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{189}=\sqrt{9*21}=\sqrt{9}*\sqrt{21}=3\sqrt{21}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-3\sqrt{21}}{2*3}=\frac{3-3\sqrt{21}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+3\sqrt{21}}{2*3}=\frac{3+3\sqrt{21}}{6} $

See similar equations:

| 3a2=36 | | 2x/5+5x=16/16 | | .525/x=0.25 | | -7(-2v+3)-2v=6(v-5)-7 | | 8-7x=-6-9 | | 2x3x4x=24 | | 19y+39=96 | | y-4=2y | | 3x+17=x+17+2x | | 2(4n+6)=n | | -6=14-w | | 14=h/1.5 | | 2y+56=180 | | -3(2x-3)=21 | | -4+2v-8=5v+9 | | -12=22+n | | 2(3x+7)(x-1)=0 | | 25(x+3)=2(2x+1) | | 4n-2=n | | -18+22=-4(x+9) | | 40=-2(5x+20) | | 3+5=16a | | w–14=-6 | | 0.75x+18=41 | | 6x=6.9 | | 163=59-u | | -(6x-2)=-(6x-3) | | 4(5+5k)+1=161 | | -x/8-6=-10 | | 7n+6=N | | -3x=7x+94 | | 3x-20=5(x-6) |

Equations solver categories